0.5(Euler-Maruyama), 1(Milstein), 和1.5 阶强Stochastic Differential Equation格式总结

本文的目的在于提供0.5,1和1.5阶强SDE数值格式的推导和内容,所有推导基于 I t o − T a y l o r Ito-Taylor ItoTaylor展开,由于国内外网站缺少关于强SDE数值阶的总结,笔者在此特作总结,为使用SDE数值格式的读者提供帮助,本文需要读者预先已经知道了有关Brown-motion的基本性质和随机微分的基本性质,否则格式推导会看不懂。如果想要实际应用直接看数值格式即可。

1. SDE强收敛阶判断定理

本文考虑如下SDE:
d X = b ( x ) d t + σ ( x ) d W . dX=b(x)dt+\sigma(x)dW. dX=b(x)dt+σ(x)dW.
使用数值SDE在时间 t t t下以 x x x为初值的近似解定义为 X ‾ t , x ( t + h ) \overline{X}_{t,x}(t+h) Xt,x(t+h),其中 t + h ≥ t t+h\geq t t+ht.真解为: X t , x ( t + h ) X_{t,x}(t+h) Xt,x(t+h).若满足如下定理:
定理1:
若存在 p 1 , p 2 p_1,p_2 p1,p2,满足:
E ∣ X t , x ( t + h ) − X ‾ t , x ( t + h ) ∣ ≤ k ( 1 + ∣ x ∣ 2 ) h p 1 . E |X_{t,x}(t+h)-\overline{X}_{t,x}(t+h)|\leq k(1+|x|^2)h^{p_1}. EXt,x(t+h)Xt,x(t+h)k(1+x2)hp1.
[ E ∣ X t , x ( t + h ) − X ‾ t , x ( t + h ) ∣ 2 ] 1 2 ≤ k ( 1 + ∣ x ∣ 2 ) 1 2 h p 2 . [E |X_{t,x}(t+h)-\overline{X}_{t,x}(t+h)|^2]^{\frac{1}{2}}\leq k(1+|x|^2)^{\frac{1}{2}}h^{p_2}. [EXt,x(t+h)Xt,x(t+h)2]21k(1+x2)21hp2.
且满足 p 1 ≥ p 2 + 1 2 p_1\geq p_2+\frac{1}{2} p1p2+21, p 2 ≥ 1 2 p_2\geq\frac{1}{2} p221.则可认为强收敛阶为 p 2 − 1 2 p_2-\frac{1}{2} p221.
该定理的证明笔者在此不做推导,感兴趣的读者自行阅读其他文献或教材,这一般都是有的,这里我们直接利用它进行以下的 I t o − T a y l o r Ito-Taylor ItoTaylor展开。

2. I t o − T a y l o r Ito-Taylor ItoTaylor展开

我们考虑:
d x = b ( x ) d t + σ ( x ) d W . dx=b(x)dt+\sigma(x)dW. dx=b(x)dt+σ(x)dW.
若有一个非常光滑的 f ( x ) f(x) f(x),根据 I t o Ito Ito公式,会有:
d f ( x ) = [ b ( x ) f x ( x ) + 1 2 σ 2 f x x ( x ) ] d t + [ σ ( x ) f x ( x ) ] d W . df(x)=[b(x)f_x(x)+\frac{1}{2} \sigma^2 f_{xx}(x)]dt+[\sigma(x)f_x(x)]dW. df(x)=[b(x)fx(x)+21σ2fxx(x)]dt+[σ(x)fx(x)]dW.
这两个微分算子可以被定义为:
L 0 = b ( x ) d d x + 1 2 σ 2 ( x ) d 2 d x 2 L^0=b(x)\frac{d}{dx}+\frac{1}{2}\sigma^2(x)\frac{d^2}{dx^2} L0=b(x)dxd+21σ2(x)dx2d2
L 1 = σ ( x ) d d x L^1=\sigma(x)\frac{d}{dx} L1=σ(x)dxd
则对两边取积分会有:
f ( x t ) = f ( x t 0 ) + ∫ t 0 t L 0 f ( x s ) d s + ∫ t 0 t L 1 f ( x s ) d W s . f(x_t)=f(x_{t0})+\int_{t_0}^t L^0f(x_s)ds+\int_{t_0}^tL^1f(x_s)dW_s. f(xt)=f(xt0)+t0tL0f(xs)ds+t0tL1f(xs)dWs.
注意到:
∫ t 0 t L 0 f ( x s ) d s = L 0 f ( x t 0 ) ( t − t 0 ) + ∫ t 0 t [ L 0 f ( x s ) − L 0 f ( x t 0 ) ] . \int_{t_0}^t L^0f(x_s)ds=L^0 f(x_{t_0})(t-t_0)+\int_{t_0}^t[L^0f(x_s)-L^0f(x_{t_0})]. t0tL0f(xs)ds=L0f(xt0)(tt0)+t0t[L0f(xs)L0f(xt0)].
∫ t 0 t L 1 f ( x s ) d W s = L 1 f ( x t 0 ) ( W t − W t 0 ) + ∫ t 0 t [ L 1 f ( x s ) − L 1 f ( x t 0 ) ] d W s . \int_{t_0}^t L^1f(x_s)dWs=L^1 f(x_{t_0})(W_t-W_{t_0})+\int_{t_0}^t[L^1f(x_s)-L^1f(x_{t_0})]dWs. t0tL1f(xs)dWs=L1f(xt0)(WtWt0)+t0t[L1f(xs)L1f(xt0)]dWs.
注意到:
∫ t 0 t [ L 0 f ( x s ) − L 0 f ( x t 0 ) ] = ∫ t 0 t ∫ t 0 s d [ L 0 f ( x s 1 ) ] d s \int_{t_0}^t[L^0f(x_s)-L^0f(x_{t_0})]=\int_{t_0}^t\int_{t_0}^s d[L^0f(x_{s_1})]ds t0t[L0f(xs)L0f(xt0)]=t0tt0sd[L0f(xs1)]ds
∫ t 0 t [ L 1 f ( x s ) − L 1 f ( x t 0 ) ] = ∫ t 0 t ∫ t 0 s d [ L 1 f ( x s 1 ) ] d W s \int_{t_0}^t[L^1f(x_s)-L^1f(x_{t_0})]=\int_{t_0}^t\int_{t_0}^s d[L^1f(x_{s_1})]dWs t0t[L1f(xs)L1f(xt0)]=t0tt0sd[L1f(xs1)]dWs
使用 I t o Ito Ito公式我们可以知道:
d [ L 0 f ( x ) ] = [ L 0 L 0 f ] d t + [ L 1 L 0 f ] d W . d[L^0f(x)]=[L^0L^0f]dt+[L^1L^0f]dW. d[L0f(x)]=[L0L0f]dt+[L1L0f]dW.
d [ L 1 f ( x ) ] = [ L 0 L 1 f ] d t + [ L 1 L 1 f ] d W . d[L^1f(x)]=[L^0L^1f]dt+[L^1L^1f]dW. d[L1f(x)]=[L0L1f]dt+[L1L1f]dW.
我们便可以得到:
f ( x t ) = f ( x t 0 ) + L 0 f ( x t 0 ) ( t − t 0 ) + L 1 f ( x t 0 ) ( W t − W t 0 ) + R ‾ f(x_t)=f(x_{t0})+L^0 f(x_{t_0})(t-t_0)+L^1 f(x_{t_0})(W_t-W_{t_0})+\overline{R} f(xt)=f(xt0)+L0f(xt0)(tt0)+L1f(xt0)(WtWt0)+R
其中:
R ‾ = ∫ t 0 t ∫ t 0 s L 0 L 0 f ( s 1 ) d s 1 d s + ∫ t 0 t ∫ t 0 s L 1 L 0 f ( s 1 ) d W s 1 d s + ∫ t 0 t ∫ t 0 s L 0 L 1 f ( s 1 ) d s 1 d W s + ∫ t 0 t ∫ t 0 s L 1 L 1 f ( s 1 ) d W s 1 d W s \overline{R}=\int_{t_0}^t\int_{t_0}^s L^0L^0f(s_1)ds_1ds+\int_{t_0}^t\int_{t_0}^s L^1L^0f(s_1)dWs_1ds+\int_{t_0}^t\int_{t_0}^s L^0L^1f(s_1)ds_1dWs+\int_{t_0}^t\int_{t_0}^s L^1L^1f(s_1)dWs_1dWs R=t0tt0sL0L0f(s1)ds1ds+t0tt0sL1L0f(s1)dWs1ds+t0tt0sL0L1f(s1)ds1dWs+t0tt0sL1L1f(s1)dWs1dWs
当然可以继续展开下去。
我们在这里只关心 f ( x ) = x f(x)=x f(x)=x的情况,因此这会导出本文的主题0.5(Euler-Maruyama), 1(Milstein), 和1.5 阶强Stochastic Differential Equation格式。

3、强格式1: 0.5阶强SDE (Euler-Maruyama)

f ( x ) = x f(x)=x f(x)=x,显然地,我们会得到: L 0 f = L 0 x = b ( x ) L^0f=L^0x=b(x) L0f=L0x=b(x), L 1 f = L 1 x = σ ( x ) L^1f=L^1x=\sigma(x) L1f=L1x=σ(x).
则根据:
f ( x t ) = f ( x t 0 ) + L 0 f ( x t 0 ) ( t − t 0 ) + L 1 f ( x t 0 ) ( W t − W t 0 ) + R ‾ f(x_t)=f(x_{t0})+L^0 f(x_{t_0})(t-t_0)+L^1 f(x_{t_0})(W_t-W_{t_0})+\overline{R} f(xt)=f(xt0)+L0f(xt0)(tt0)+L1f(xt0)(WtWt0)+R
代入 f ( x ) = x f(x)=x f(x)=x可得:
x t = x t 0 + b ( x t 0 ) ( t − t 0 ) + σ ( x t 0 ) ( W t − W t 0 ) + R ‾ x_t=x_{t_0}+b(x_{t_0})(t-t_0)+\sigma(x_{t_0})(W_t-W_{t_0})+\overline{R} xt=xt0+b(xt0)(tt0)+σ(xt0)(WtWt0)+R
此时 R ‾ \overline{R} R为:
R ‾ = ∫ t 0 t ∫ t 0 s L 0 b ( x s 1 ) d s 1 d s + ∫ t 0 t ∫ t 0 s L 1 b ( x s 1 ) d W s 1 d s + ∫ t 0 t ∫ t 0 s L 0 σ ( x s 1 ) d s 1 d W s + ∫ t 0 t ∫ t 0 s L 1 σ ( x s 1 ) d W s 1 d W s \overline{R}=\int_{t_0}^t\int_{t_0}^s L^0b(x_{s_1})ds_1ds+\int_{t_0}^t\int_{t_0}^s L^1b(x_{s_1})dWs_1ds+\int_{t_0}^t\int_{t_0}^s L^0\sigma(x_{s_1})ds_1dWs+\int_{t_0}^t\int_{t_0}^s L^1\sigma(x_{s_1})dWs_1dWs R=t0tt0sL0b(xs1)ds1ds+t0tt0sL1b(xs1)dWs1ds+t0tt0sL0σ(xs1)ds1dWs+t0tt0sL1σ(xs1)dWs1dWs
称下式为Euler-Maruyama格式:
x t = x t 0 + b ( x t 0 ) ( t − t 0 ) + σ ( x t 0 ) ( W t − W t 0 ) x_t=x_{t_0}+b(x_{t_0})(t-t_0)+\sigma(x_{t_0})(W_t-W_{t_0}) xt=xt0+b(xt0)(tt0)+σ(xt0)(WtWt0)需要用到如下随机微分性质: E [ d W s 2 ] = d s E[dWs^2]=ds E[dWs2]=ds
根据定理和随机微分的性质可知余项 R ‾ \overline{R} R中满足: p 1 = 2 p_1=2 p1=2 (具有 d W s dWs dWs会使得阶数为0), p 2 = 1 p_2=1 p2=1(一个 d s ds ds贡献一个阶,一个 d W s dWs dWs贡献0.5个阶), 满足定理格式,此时强收敛阶为 p 2 − 0.5 = 0.5 p_2-0.5=0.5 p20.5=0.5阶,则该格式具有0.5阶强收敛性。

4、强格式2/3: 1阶强SDE (Milstein)和1.5阶强SDE.

注意到余项:
R ‾ = ∫ t 0 t ∫ t 0 s L 0 b ( x s 1 ) d s 1 d s + ∫ t 0 t ∫ t 0 s L 1 b ( x s 1 ) d W s 1 d s + ∫ t 0 t ∫ t 0 s L 0 σ ( x s 1 ) d s 1 d W s + ∫ t 0 t ∫ t 0 s L 1 σ ( x s 1 ) d W s 1 d W s \overline{R}=\int_{t_0}^t\int_{t_0}^s L^0b(x_{s_1})ds_1ds+\int_{t_0}^t\int_{t_0}^s L^1b(x_{s_1})dWs_1ds+\int_{t_0}^t\int_{t_0}^s L^0\sigma(x_{s_1})ds_1dWs+\int_{t_0}^t\int_{t_0}^s L^1\sigma(x_{s_1})dWs_1dWs R=t0tt0sL0b(xs1)ds1ds+t0tt0sL1b(xs1)dWs1ds+t0tt0sL0σ(xs1)ds1dWs+t0tt0sL1σ(xs1)dWs1dWs
我们想要提升强格式阶,那么显然此时若能够提升 p 2 p_2 p2的阶就可以了,注意到限制了 p 2 p_2 p2的阶为 R ‾ \overline{R} R中这一项:
G = ∫ t 0 t ∫ t 0 s L 1 σ ( x s 1 ) d W s 1 d W s G=\int_{t_0}^t\int_{t_0}^s L^1\sigma(x_{s_1})dWs_1dWs G=t0tt0sL1σ(xs1)dWs1dWs那么,我们需要对其进行再一次的展开,此时根据 I t o Ito Ito公式,我们可以将它展开为:
G = L 1 σ ( x t 0 ) ∫ t 0 t ∫ t 0 s d W s 1 d W s + ∫ t 0 t ∫ t 0 s ∫ t 0 s 1 L 0 L 1 σ ( x s 2 ) d s 2 d W s 1 d W s + ∫ t 0 t ∫ t 0 s ∫ t 0 s 1 L 1 L 1 σ ( x s 2 ) d W s 2 d W s 1 d W s G=L^1\sigma(x_{t_0})\int_{t_0}^t\int_{t_0}^s dWs_1dWs+\int_{t_0}^t\int_{t_0}^s\int _{t_0}^{s_1}L^0L^1\sigma(x_{s_2})d{s_2}dWs_1dWs+\int_{t_0}^t\int_{t_0}^s\int _{t_0}^{s_1}L^1L^1\sigma(x_{s_2})d{Ws_2}dWs_1dWs G=L1σ(xt0)t0tt0sdWs1dWs+t0tt0st0s1L0L1σ(xs2)ds2dWs1dWs+t0tt0st0s1L1L1σ(xs2)dWs2dWs1dWs
此时可以得到Milstein格式为:
x t = x t 0 + b ( x t 0 ) ( t − t 0 ) + σ ( x t 0 ) ( W t − W t 0 ) + L 1 σ ( x t 0 ) ∫ t 0 t ∫ t 0 s d W s 1 d W s x_t=x_{t_0}+b(x_{t_0})(t-t_0)+\sigma(x_{t_0})(W_t-W_{t_0})+L^1\sigma(x_{t_0})\int_{t_0}^t\int_{t_0}^s dWs_1dWs xt=xt0+b(xt0)(tt0)+σ(xt0)(WtWt0)+L1σ(xt0)t0tt0sdWs1dWs这即:
x t = x t 0 + b ( x t 0 ) ( t − t 0 ) + σ ( x t 0 ) ( W t − W t 0 ) + σ ′ ( x t 0 ) σ ( x t 0 ) ∫ t 0 t ∫ t 0 s d W s 1 d W s x_t=x_{t_0}+b(x_{t_0})(t-t_0)+\sigma(x_{t_0})(W_t-W_{t_0})+\sigma^{'}(x_{t_0})\sigma(x_{t_0})\int_{t_0}^t\int_{t_0}^s dWs_1dWs xt=xt0+b(xt0)(tt0)+σ(xt0)(WtWt0)+σ(xt0)σ(xt0)t0tt0sdWs1dWs其中:
∫ t 0 t ∫ t 0 s d W s 1 d W s = 1 2 ( W t − W t 0 ) 2 − 1 2 ( t − t 0 ) \int_{t_0}^t\int_{t_0}^s dWs_1dWs=\frac{1}{2}(W_t-W_{t_0})^2-\frac{1}{2}(t-t_0) t0tt0sdWs1dWs=21(WtWt0)221(tt0)这即可以得到最终格式为:
x t = x t 0 + b ( x t 0 ) ( t − t 0 ) + σ ( x t 0 ) ( W t − W t 0 ) + 1 2 σ ′ ( x t 0 ) σ ( x t 0 ) [ ( W t − W t 0 ) 2 − ( t − t 0 ) ] x_t=x_{t_0}+b(x_{t_0})(t-t_0)+\sigma(x_{t_0})(W_t-W_{t_0})+\frac{1}{2}\sigma^{'}(x_{t_0})\sigma(x_{t_0})[(W_t-W_{t_0})^2-(t-t_0)] xt=xt0+b(xt0)(tt0)+σ(xt0)(WtWt0)+21σ(xt0)σ(xt0)[(WtWt0)2(tt0)]
此时注意到 p 1 = 2 p_1=2 p1=2不变,因为提升了 p 2 = 3 2 p_2=\frac{3}{2} p2=23,满足定理要求,因此该格式收敛阶为1.下面继续提升,注意到此时若想提升强收敛阶,很明显提升 p 2 p_2 p2是不够的了,因为此时 p 1 p_1 p1也需要被提升,但是很明显的是在 R ‾ \overline{R} R中有 p 2 = 3 2 p_2=\frac{3}{2} p2=23的项两个:
∫ t 0 t ∫ t 0 s L 0 σ ( x s 1 ) d s 1 d W s \int_{t_0}^t\int_{t_0}^s L^0\sigma(x_{s_1})ds_1dWs t0tt0sL0σ(xs1)ds1dWs
∫ t 0 t ∫ t 0 s L 1 b ( x s 1 ) d W s 1 d s \int_{t_0}^t\int_{t_0}^s L^1b(x_{s_1})dWs_1ds t0tt0sL1b(xs1)dWs1ds则他们也需要被包含在内才可以提升该格式的收敛阶,因此在 M i l s t e i n Milstein Milstein的基础上,我们继续延拓格式 T T T为:
T = M i l s t e i n + K T=Milstein+K T=Milstein+K
K = L 0 σ ( x t 0 ) ∫ t 0 t ∫ t 0 s d s 1 d W s + L 1 b ( x t 0 ) ∫ t 0 t ∫ t 0 s d W s 1 d s + L 0 b ( x t 0 ) ∫ t 0 t ∫ t 0 s d s 1 d s + ( L 1 ) 2 σ ( x t 0 ) ∫ t 0 t ∫ t 0 s ∫ t 0 s 1 d W s 2 d W s 1 d W s K=L^0\sigma(x_{t_0})\int_{t_0}^t\int_{t_0}^sds_1dWs+L^1b(x_{t_0})\int_{t_0}^t\int_{t_0}^s dWs_1ds+L^0b(x_{t_0})\int_{t_0}^t\int_{t_0}^s ds_1ds+(L^1)^2\sigma(x_{t_0})\int_{t_0}^t\int_{t_0}^s\int _{t_0}^{s_1}d{Ws_2}dWs_1dWs K=L0σ(xt0)t0tt0sds1dWs+L1b(xt0)t0tt0sdWs1ds+L0b(xt0)t0tt0sds1ds+(L1)2σ(xt0)t0tt0st0s1dWs2dWs1dWs我们仅考虑从 n n n n + 1 n+1 n+1会发生什么,令 △ t = t n + 1 − t n \triangle t=t_{n+1}-t_n t=tn+1tn, △ W = W t n + 1 − W t n \triangle W=W_{t_{n+1}}-W_{t_n} W=Wtn+1Wtn
( L 1 ) 2 σ ( x t 0 ) ∫ t 0 t ∫ t 0 s ∫ t 0 s 1 d W s 2 d W s 1 d W s = ( L 1 ) 2 σ ( x t 0 ) [ 1 6 △ W 2 − 1 2 △ t ] △ W (L^1)^2\sigma(x_{t_0})\int_{t_0}^t\int_{t_0}^s\int _{t_0}^{s_1}d{Ws_2}dWs_1dWs=(L^1)^2\sigma(x_{t_0})[\frac{1}{6}\triangle W^2-\frac{1}{2}\triangle t]\triangle W (L1)2σ(xt0)t0tt0st0s1dWs2dWs1dWs=(L1)2σ(xt0)[61W221t]W这一点使用 I t o Ito Ito公式很容易证明。
另一方面令:
△ Z = ∫ t n t n + 1 ∫ t n s d W s 1 d s = ∫ t n t n + 1 [ t n + 1 − s ] d W s \triangle Z=\int_{t_n}^{t_{n+1}}\int_{t_n}^s dWs_1ds=\int_{t_n}^{t_{n+1}}[t_{n+1}-s] dW_s Z=tntn+1tnsdWs1ds=tntn+1[tn+1s]dWs根据随机微分的性质,显然
△ Z ∼ N ( 0 , ∫ t n t n + 1 [ t n + 1 − s ] 2 d s ) = N ( 0 , 1 3 △ t 3 ) \triangle Z \sim N(0,\int_{t_n}^{t_{n+1}}[t_{n+1}-s]^2 ds)=N(0,\frac{1}{3} \triangle t^3) ZN(0,tntn+1[tn+1s]2ds)=N(0,31t3)注意到:
E [ △ Z △ W ] = ∫ t n t n + 1 [ t n + 1 − s ] d s = 1 2 △ t 2 E[\triangle Z \triangle W]=\int_{t_n}^{t_{n+1}}[t_{n+1}-s] ds=\frac{1}{2} \triangle t^2 E[ZW]=tntn+1[tn+1s]ds=21t2因此:
E [ ( △ Z − 1 2 △ W ) △ W ] = 0 E[(\triangle Z-\frac{1}{2} \triangle W)\triangle W]=0 E[(Z21W)W]=0这样找到了独立的样本,且注意到此时根据随机微分的性质可得到:
( △ Z − 1 2 △ W ) ~ N ( 0 , 1 12 △ t 3 ) (\triangle Z-\frac{1}{2} \triangle W)~N(0,\frac{1}{12}\triangle t^3) (Z21W)N(0,121t3)注意到:
∫ t 0 t ∫ t 0 s d s 1 d W s = △ t △ W − △ Z \int_{t_0}^t\int_{t_0}^sds_1dWs=\triangle t \triangle W-\triangle Z t0tt0sds1dWs=tWZ那么显然地,我们可以根据如下方法来给出1.5阶格式,若我们有 G 1 G_1 G1, G 2 G_2 G2两个独立的同分布正态分布变量
G 1 ~ N ( 0 , 1 ) , G 2 ~ N ( 0 , 1 ) G_1~N(0,1),G_2~N(0,1) G1N(0,1),G2N(0,1)那么根据我们的推导
K = L 0 σ ( x t 0 ) ∫ t 0 t ∫ t 0 s d s 1 d W s + L 1 b ( x t 0 ) ∫ t 0 t ∫ t 0 s d W s 1 d s + L 0 b ( x t 0 ) ∫ t 0 t ∫ t 0 s d s 1 d s + ( L 1 ) 2 σ ( x t 0 ) ∫ t 0 t ∫ t 0 s ∫ t 0 s 1 d W s 2 d W s 1 d W s K=L^0\sigma(x_{t_0})\int_{t_0}^t\int_{t_0}^sds_1dWs+L^1b(x_{t_0})\int_{t_0}^t\int_{t_0}^s dWs_1ds+L^0b(x_{t_0})\int_{t_0}^t\int_{t_0}^s ds_1ds+(L^1)^2\sigma(x_{t_0})\int_{t_0}^t\int_{t_0}^s\int _{t_0}^{s_1}d{Ws_2}dWs_1dWs K=L0σ(xt0)t0tt0sds1dWs+L1b(xt0)t0tt0sdWs1ds+L0b(xt0)t0tt0sds1ds+(L1)2σ(xt0)t0tt0st0s1dWs2dWs1dWs
K = L 0 σ ( x t 0 ) [ △ t △ W − △ Z ] + L 1 b ( x t 0 ) △ Z + L 0 b ( x t 0 ) ∫ t 0 t ∫ t 0 s d s 1 d s + ( L 1 ) 2 σ ( x t 0 ) [ 1 6 △ W 2 − 1 2 △ t ] △ W K=L^0\sigma(x_{t_0})[\triangle t \triangle W-\triangle Z]+L^1b(x_{t_0})\triangle Z+L^0b(x_{t_0})\int_{t_0}^t\int_{t_0}^s ds_1ds+(L^1)^2\sigma(x_{t_0})[\frac{1}{6}\triangle W^2-\frac{1}{2}\triangle t]\triangle W K=L0σ(xt0)[tWZ]+L1b(xt0)Z+L0b(xt0)t0tt0sds1ds+(L1)2σ(xt0)[61W221t]W其中:
△ W = △ t G 1 . \triangle W= \sqrt{\triangle t} G_1. W=t G1.
△ Z = 1 2 △ t △ W + 1 2 3 △ t 3 2 G 2 \triangle Z= \frac{1}{2} \triangle t\triangle W+\frac{1}{2 \sqrt{3}} \triangle t^{\frac{3}{2}} G_2 Z=21tW+23 1t23G2此时 K K K中所有成分可求,这样的1.5阶格式为:

x t = x t 0 + b ( x t 0 ) ( t − t 0 ) + σ ( x t 0 ) ( W t − W t 0 ) + 1 2 σ ′ ( x t 0 ) σ ( x t 0 ) [ ( W t − W t 0 ) 2 − ( t − t 0 ) ] + K x_t=x_{t_0}+b(x_{t_0})(t-t_0)+\sigma(x_{t_0})(W_t-W_{t_0})+\frac{1}{2}\sigma^{'}(x_{t_0})\sigma(x_{t_0})[(W_t-W_{t_0})^2-(t-t_0)]+K xt=xt0+b(xt0)(tt0)+σ(xt0)(WtWt0)+21σ(xt0)σ(xt0)[(WtWt0)2(tt0)]+K
K = L 0 σ ( x t 0 ) [ △ t △ W − △ Z ] + L 1 b ( x t 0 ) △ Z + L 0 b ( x t 0 ) ∫ t 0 t ∫ t 0 s d s 1 d s + ( L 1 ) 2 σ ( x t 0 ) [ 1 6 △ W 2 − 1 2 △ t ] △ W K=L^0\sigma(x_{t_0})[\triangle t \triangle W-\triangle Z]+L^1b(x_{t_0})\triangle Z+L^0b(x_{t_0})\int_{t_0}^t\int_{t_0}^s ds_1ds+(L^1)^2\sigma(x_{t_0})[\frac{1}{6}\triangle W^2-\frac{1}{2}\triangle t]\triangle W K=L0σ(xt0)[tWZ]+L1b(xt0)Z+L0b(xt0)t0tt0sds1ds+(L1)2σ(xt0)[61W221t]W当然,读者可以自行推导更高阶的 I t o − T a y l o r Ito-Taylor ItoTaylor展开,笔者在这里不过多介绍。

  • 15
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值