前言 吴恩达的课程堪称经典,有必要总结一下。 学以致用,以学促用,通过笔记总结,巩固学习成果,复习新学的概念。 目录 文章目录 前言目录正文基于内容的推荐协同过滤实现细节:均值归一化 正文 本章主要讲述推荐系统 预测电影评分。 基于内容的推荐 通过属性以及偏好的乘积获得评分。 问题形式。 优化目标。 优化算法 协同过滤 问题动机 问题形式化计算流程 优化目标。 协同过滤 协同过滤算法 算法流程图 向量化,低秩矩阵修复 协同过滤,预测分数。 如何推荐电影 实现细节:均值归一化 均值归一化。