前言
吴恩达的课程堪称经典,有必要总结一下。
学以致用,以学促用,通过笔记总结,巩固学习成果,复习新学的概念。
目录
正文
超参数调整。
超参数信息。
用随机测试的方法而不是格点法,测试所有的超参数。
选择适宜的节点数。
随机选择超参数。
超参数调整时的适宜步伐。
指数化梯度回归的超参数。
超参数测试时情形。
精心训练一个模型,或者同时训练很多个模型。
对输入进行标准化可以加速你的学习进度。
实现批量归一化。
在一个网络中加入批归一化。
使用小批量样本进行工作。
实现小批量样本的梯度下降。
在偏移了的输入分布上训练算法。
为什么偏移的分布会影响到神经网络的学习。
批标准化也是正则化的一种。
测试时的批标准化。
训练识别不同生物。
softmax例子,进行调整。
理解softmax。
损失函数。
总结一个softmax分类器。
深度学习框架。
激活问题。
代码例子。