吴恩达 coursera AI 专项二第三课总结+作业答案

前言

吴恩达的课程堪称经典,有必要总结一下。
学以致用,以学促用,通过笔记总结,巩固学习成果,复习新学的概念。

目录

正文

超参数调整。

在这里插入图片描述超参数信息。
在这里插入图片描述用随机测试的方法而不是格点法,测试所有的超参数。

在这里插入图片描述选择适宜的节点数。

在这里插入图片描述随机选择超参数。
在这里插入图片描述超参数调整时的适宜步伐。
在这里插入图片描述指数化梯度回归的超参数。
在这里插入图片描述超参数测试时情形。
在这里插入图片描述精心训练一个模型,或者同时训练很多个模型。
在这里插入图片描述对输入进行标准化可以加速你的学习进度。
在这里插入图片描述实现批量归一化。
在这里插入图片描述在一个网络中加入批归一化。
在这里插入图片描述使用小批量样本进行工作。
在这里插入图片描述实现小批量样本的梯度下降。
在这里插入图片描述在偏移了的输入分布上训练算法。
在这里插入图片描述为什么偏移的分布会影响到神经网络的学习。
在这里插入图片描述批标准化也是正则化的一种。
在这里插入图片描述测试时的批标准化。
在这里插入图片描述训练识别不同生物。

在这里插入图片描述softmax例子,进行调整。
在这里插入图片描述理解softmax。
在这里插入图片描述损失函数。
在这里插入图片描述总结一个softmax分类器。
在这里插入图片描述深度学习框架。
在这里插入图片描述激活问题。
在这里插入图片描述代码例子。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值