C#/WPF 使用开源Wav2Lip做自己的数字人(无需安装环境)

实现效果

Speaker

Wav2Lip概述

        2020年,来自印度海德拉巴大学和英国巴斯大学的团队,在ACM MM2020发表了的一篇论文《A Lip Sync Expert Is All You Need for Speech to Lip Generation In The Wild 》,在文章中,他们提出一个叫做Wav2Lip的AI模型,只需要一段人物视频和一段目标语音,就能够让音频和视频合二为一,人物嘴型与音频完全匹配。

对口型的技术,此前其实已经有很多,甚至在基于深度学习的技术出现之前,就有一些技术使角色的嘴唇形状与实际的语音信号相匹配。但这Wav2Lip 在目前的众多方法中,显示出了绝对优势。现有的其它方法,主要是基于静态图像,来输出与目标语音匹配的唇形同步视频,但对于动态的、在讲话的人物,唇形同步往往效果不佳。而 Wav2Lip 则可以直接将动态的视频,进行唇形转换,输出与目标语音相匹配的视频结果。

Wav2Lip模型结构

Wav2Lip模型是一个两阶段模型。

  • 第一阶段是:训练一个能够判别声音与嘴型是否同步的判别器;
  • 第二阶段是:采用编码-解码模型结构(一个生成器 ,两个判别器);

Wav2Lip生成数字人

        Wav2Lip生成数字人的步骤比较麻烦,有时候可能出现下载依赖包出错的问题,具体步骤如下:

1、从github下载wav2lip开源包

git clone https://github.com/Rudrabha/Wav2Lip

2、安装运行环境

安装conda

3、运行环境构建

conda create -n wav2lip python==3.10
conda activate wav2lip 
conda install ffmpeg
cd Wav2lip
pip install -r requirements.txt

4、预训练模型下载及存放

wav2lip.pth存放到checkpoints目录下
wav2lip_gan.pth存放到checkpoints目录下
lipsync_expert.pth存放到checkpoints目录下
visual_quality_disc.pth存放到checkpoints目录下
s3fd.pth存放到face_detection/detection/sfd/目录下

5、通过python命令合成数字人

 python inference.py --checkpoint_path checkpoints/wav2lip_gan.pth --face data/demo.png --audio data/demo.wav 

WPF生成启动数字人

        怎么让WPF启动虚拟数字人,之前我们通过WPF显示图片并播放语音,或者通过cef加载webm视频来实现数字人,这种方式的缺点是不能通过输入的文字实现嘴型与语音同步(C# 实现虚拟数字人_c#数字人源码-数字人直播源码-CSDN博客),现在我们通过Wav2Lip便可以轻松解决这个问题。

为了让C#直接调用Wav2Lip启动生成数字人,我讲程序和运行环境一起打包,你可以跳过那些繁琐的安装配置过程,直接下载运行。操作界面如下:

实例地址:https://download.csdn.net/download/lvxingzhe3/89076048

03-11
### Wav2Lip 技术实现 Wav2Lip 是一种用于将音频信号转换成相应面部动画的技术,尤其擅长于唇部动作的精确同步[^3]。该技术依赖深度学习算法来解析音频文件中的语音信息,并将其映射到目标视频中人物嘴唇的动作上。具体来说,Wav2Lip 使用卷积神经网络(CNNs)提取音频特征以及视觉特征,再通过时间序列预测模型生成逐帧对应的嘴型变化。 为了提高同步质量,Wav2Lip 还引入了一些改进措施: - **多模态融合**:结合声纹识别和其他感官数据以增加准确性; - **自适应调整机制**:根据不同说话者的发音习惯自动校准参数设置; 此外,当与GFPGAN相结合时,不仅可以改善唇动的真实性和一致性,还可以大幅度提升整体画质,让最终产出的内容看起来更为逼真自然[^4]。 ```python from wav2lip import Wav2LipModel model = Wav2LipModel() audio_path = 'path/to/audio/file.wav' video_path = 'path/to/video/file.mp4' output_video = model.sync_lips(audio=audio_path, video=video_path) ``` 这段Python代码展示了如何调用预训练好的 `Wav2Lip` 模型来进行基本操作——即给定一段音频路径和一个视频路径作为输入,返回经过处理后的输出视频对象。 ### 应用场景 目前,这项技术创新已经在多个行业得到了广泛应用,特别是在娱乐产业中表现出色。例如,在影视作品创作过程中,导演们可以借助此工具轻松完成配音演员口型与角色形象之间的完美对接;而在直播平台上,则有助于打造更具吸引力的虚拟偶像或客服机器人形象。除此之外,教育、医疗等领域也开始探索其潜力所在,比如开发辅助听力障碍者理解对话的应用程序等[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无熵~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值