2460: [BeiJing2011]元素
Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1731 Solved: 895
[ Submit][ Status][ Discuss]
Description
相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔
法矿石炼制法杖的技术。那时人们就认识到,一个法杖的法力取决于使用的矿石。
一般地,矿石越多则法力越强,但物极必反:有时,人们为了获取更强的法力而
使用了很多矿石,却在炼制过程中发现魔法矿石全部消失了,从而无法炼制
出法杖,这个现象被称为“魔法抵消” 。特别地,如果在炼制过程中使用超过
一块同一种矿石,那么一定会发生“魔法抵消”。
后来,随着人们认知水平的提高,这个现象得到了很好的解释。经过了大量
的实验后,著名法师 Dmitri 发现:如果给现在发现的每一种矿石进行合理的编
号(编号为正整数,称为该矿石的元素序号),那么,一个矿石组合会产生“魔
法抵消”当且仅当存在一个非空子集,那些矿石的元素序号按位异或起来
为零。 (如果你不清楚什么是异或,请参见下一页的名词解释。 )例如,使用两
个同样的矿石必将发生“魔法抵消”,因为这两种矿石的元素序号相同,异或起
来为零。
并且人们有了测定魔力的有效途径,已经知道了:合成出来的法杖的魔力
等于每一种矿石的法力之和。人们已经测定了现今发现的所有矿石的法力值,
并且通过实验推算出每一种矿石的元素序号。
现在,给定你以上的矿石信息,请你来计算一下当时可以炼制出的法杖最多
有多大的魔力。
Input
第一行包含一个正整数N,表示矿石的种类数。
接下来 N行,每行两个正整数Numberi 和 Magici,表示这种矿石的元素序号
和魔力值。
Output
仅包一行,一个整数:最大的魔力值
Sample Input
1 10
2 20
3 30
Sample Output
HINT
由于有“魔法抵消”这一事实,每一种矿石最多使用一块。
如果使用全部三种矿石,由于三者的元素序号异或起来:1 xor 2 xor 3 = 0 ,
则会发生魔法抵消,得不到法杖。
可以发现,最佳方案是选择后两种矿石,法力为 20+30=50。
对于全部的数据:N ≤ 1000,Numberi ≤ 10^18
,Magici ≤ 10^4
。
Source
第一次写线性基。线性基的相关学习看这里:https://blog.sengxian.com/algorithms/linear-basis
这个大概是一个线性基模板。就是求带权极大线性无关组。就是把权值排序插入线性基,插得进去就计入答案就可以了。这是一个贪心,证明要用拟阵,不会T-T
代码:
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N = 1100;
long long read() {
char ch = getchar(); long long x = 0, f = 1;
while(ch < '0' || ch > '9') {if(ch == '-') f = -1; ch = getchar();}
while(ch >= '0' && ch <= '9') {x = (x << 1) + (x << 3) - '0' + ch; ch = getchar();}
return x * f;
}
int n, ans;
long long bin[65], b[65];
struct data {
long long a; int b;
}a[N];
bool operator < (data a, data b) {return a.b > b.b;}
bool Insert(long long x) {
for(int i = 63; ~i && x; --i)
if(bin[i] & x) {
if(!b[i]) {b[i] = x; return true;}
else x ^= b[i];
}
return false;
}
int main() {
bin[0] = 1; for(int i = 1;i <= 63; ++i) bin[i] = bin[i - 1] << 1;
n = read(); for(int i = 1;i <= n; ++i) a[i].a = read(), a[i].b = read();
sort(a + 1, a + n + 1);
for(int i = 1; i <= n; ++i) if(Insert(a[i].a)) ans += a[i].b;
printf("%d\n", ans);
return 0;
}