算法学习:分数规划

本文深入探讨了分数规划问题,包括引例poj2976 Dropping tests的分析,详细介绍了二分答案的伪代码以及Dinkelbach算法的工作原理。通过迭代更新λ值,直至不变,找到最优解。对比了两种算法的性能,Dinkelbach算法通常更快,但需要记录解。提供了相关资源链接以便进一步学习。
摘要由CSDN通过智能技术生成

算法学习:分数规划

引例

poj2976 Dropping tests

分析

分数规划的一般形式

Minimize/maximizeλ=f(x)=a(x)b(x)(xϵS)

s.t.xϵS,b(x)>0

特别地,当
Minimize/maximizeλ=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值