bzoj2127: happiness
Description
高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友。这学期要分文理科了,每个同学对于选择文科与理科有着自己的喜悦值,而一对好朋友如果能同时选文科或者理科,那么他们又将收获一些喜悦值。作为计算机竞赛教练的scp大老板,想知道如何分配可以使得全班的喜悦值总和最大。
Input
第一行两个正整数n,m。接下来是六个矩阵第一个矩阵为n行m列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学选择文科获得的喜悦值。第二个矩阵为n行m列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学选择理科获得的喜悦值。第三个矩阵为n-1行m列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学与第i+1行第j列的同学同时选择文科获得的额外喜悦值。第四个矩阵为n-1行m列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学与第i+1行第j列的同学同时选择理科获得的额外喜悦值。第五个矩阵为n行m-1列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学与第i行第j+1列的同学同时选择文科获得的额外喜悦值。第六个矩阵为n行m-1列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学与第i行第j+1列的同学同时选择理科获得的额外喜悦值。
Output
输出一个整数,表示喜悦值总和的最大值
Sample Input
1 2
1 1
100 110
1
1000
Sample Output
1210
【样例说明】
两人都选理,则获得100+110+1000的喜悦值。
【数据规模】
对于100%以内的数据,n,m<=100 所有喜悦值均为小于等于5000的非负整数
分析
这是一道很神的最小割的题目。
看过彭天翼的《浅析一类最小割问题》的人做这道应该不难。
不过鉴于网上这个论文实在少,我简单说明一下建图的模型。
问题一般化
有N个任务,每个任务可以在A上或者B上完成,花费分别为 ai 和 bi 对于每一对二元关系(x,y)有如下要求
1.x,y同时在A上完成,花费为 v1
2.x,y同时在B上完成,花费为 v2
3.x在A上完成,y在B上完成,花费为 v3
4.x在B上完成,y在A上完成,花费为 v4
建模
(图很劣质,请勿吐槽)
我们考虑最小割,如果S与x的边被割(x被割到T集)中表示在A机器上完成,如果x与T的边被割(x被割到S集)中表示在B机器上完成。
那么于是,我们可以列出以下方程组。
a+b=v1 ……①
c+d=v2 ……②
a+d+f=v3 ……③
b