bzoj2127: happiness 浅析一类最小割问题——二元关系的应用

该博客详细分析了bzoj2127题目的解决方案,通过最小割模型解决高中班级分文理科以最大化喜悦值的问题。讨论了如何将问题一般化为二元关系,并建立数学模型,解释了当二元关系的喜悦值条件不同时如何调整模型。还提供了问题的代码实现。
摘要由CSDN通过智能技术生成

bzoj2127: happiness

Description

高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友。这学期要分文理科了,每个同学对于选择文科与理科有着自己的喜悦值,而一对好朋友如果能同时选文科或者理科,那么他们又将收获一些喜悦值。作为计算机竞赛教练的scp大老板,想知道如何分配可以使得全班的喜悦值总和最大。

Input

第一行两个正整数n,m。接下来是六个矩阵第一个矩阵为n行m列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学选择文科获得的喜悦值。第二个矩阵为n行m列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学选择理科获得的喜悦值。第三个矩阵为n-1行m列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学与第i+1行第j列的同学同时选择文科获得的额外喜悦值。第四个矩阵为n-1行m列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学与第i+1行第j列的同学同时选择理科获得的额外喜悦值。第五个矩阵为n行m-1列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学与第i行第j+1列的同学同时选择文科获得的额外喜悦值。第六个矩阵为n行m-1列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学与第i行第j+1列的同学同时选择理科获得的额外喜悦值。

Output

输出一个整数,表示喜悦值总和的最大值

Sample Input

1 2
1 1
100 110
1
1000

Sample Output

1210
【样例说明】
两人都选理,则获得100+110+1000的喜悦值。
【数据规模】
对于100%以内的数据,n,m<=100 所有喜悦值均为小于等于5000的非负整数

分析

这是一道很神的最小割的题目。
看过彭天翼的《浅析一类最小割问题》的人做这道应该不难。
不过鉴于网上这个论文实在少,我简单说明一下建图的模型。

问题一般化

有N个任务,每个任务可以在A上或者B上完成,花费分别为 ai bi 对于每一对二元关系(x,y)有如下要求

1.x,y同时在A上完成,花费为 v1
2.x,y同时在B上完成,花费为 v2
3.x在A上完成,y在B上完成,花费为 v3
4.x在B上完成,y在A上完成,花费为 v4

建模


(图很劣质,请勿吐槽)
我们考虑最小割,如果S与x的边被割(x被割到T集)中表示在A机器上完成,如果x与T的边被割(x被割到S集)中表示在B机器上完成。
那么于是,我们可以列出以下方程组。
a+b=v1 ……①
c+d=v2 ……②
a+d+f=v3 ……③
b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值