bzoj 3676: [Apio2014]回文串
Description
考虑一个只包含小写拉丁字母的字符串s。我们定义s的一个子串t的“出
现值”为t在s中的出现次数乘以t的长度。请你求出s的所有回文子串中的最
大出现值。
Input
输入只有一行,为一个只包含小写字母(a -z)的非空字符串s。
Output
输出一个整数,为逝查回文子串的最大出现值。
Sample Input
【样例输入l】
abacaba
【样例输入2]
www
Sample Output
【样例输出l】
7
【样例输出2]
4
HINT
一个串是回文的,当且仅当它从左到右读和从右到左读完全一样。
在第一个样例中,回文子串有7个:a,b,c,aba,aca,bacab,abacaba,其中:
● a出现4次,其出现值为4:1:1=4
● b出现2次,其出现值为2:1:1=2
● c出现1次,其出现值为l:1:l=l
● aba出现2次,其出现值为2:1:3=6
● aca出现1次,其出现值为1=1:3=3
●bacab出现1次,其出现值为1:1:5=5
● abacaba出现1次,其出现值为1:1:7=7
故最大回文子串出现值为7。
【数据规模与评分】
数据满足1≤字符串长度≤300000。
分析
回文自动机裸题
好像可以用manacher+后缀自动机做
回文自动机的算法学习:Palindromic Tree——回文树【处理一类回文串问题的强力工具】
没办法写得更好了。
代码
/**************************************************************
Problem: 3676
User: 2014lvzelong
Language: C++
Result: Accepted
Time:752 ms
Memory:37616 kb
****************************************************************/
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#include<cmath>
using namespace std;
const int N = 310000;
long long ans;
int len[N], f[N], a[N], val[N], ch[N][26], last, sz, n;
void PDT_pre() {
f[last = sz = 0] = 1;
len[++sz] = a[n = 0] = -1;
}
void Extend(int c) {
a[++n] = c; int p, np, x;
for(p = last; a[n - len[p] - 1] != a[n]; p = f[p]) ;
if(!ch[p][c]) {
len[np = ++sz] = len[p] + 2;
for(x = f[p]; a[n - len[x] - 1] != a[n]; x = f[x]) ;
f[np] = ch[x][c]; ch[p][c] = np;
}
++val[last = ch[p][c]];
}
void work() {
char ch = getchar();
while(ch < 'a' || ch > 'z') ch = getchar();
for(;ch >= 'a' && ch <= 'z'; ch = getchar()) Extend(ch - 'a');
}
int main() {
PDT_pre();
work();
for(int i = sz; i >= 2; --i) {
val[f[i]] += val[i];
ans = max(ans, 1LL * val[i] * len[i]);
}
printf("%lld\n", ans);
return 0;
}