bzoj 3676: [Apio2014]回文串 回文自动机

bzoj 3676: [Apio2014]回文串

Description

考虑一个只包含小写拉丁字母的字符串s。我们定义s的一个子串t的“出
现值”为t在s中的出现次数乘以t的长度。请你求出s的所有回文子串中的最
大出现值。

Input

输入只有一行,为一个只包含小写字母(a -z)的非空字符串s。

Output

输出一个整数,为逝查回文子串的最大出现值。

Sample Input

【样例输入l】
abacaba
【样例输入2]
www

Sample Output

【样例输出l】
7
【样例输出2]
4

HINT

一个串是回文的,当且仅当它从左到右读和从右到左读完全一样。
在第一个样例中,回文子串有7个:a,b,c,aba,aca,bacab,abacaba,其中:
● a出现4次,其出现值为4:1:1=4
● b出现2次,其出现值为2:1:1=2
● c出现1次,其出现值为l:1:l=l
● aba出现2次,其出现值为2:1:3=6
● aca出现1次,其出现值为1=1:3=3
●bacab出现1次,其出现值为1:1:5=5
● abacaba出现1次,其出现值为1:1:7=7
故最大回文子串出现值为7。
【数据规模与评分】
数据满足1≤字符串长度≤300000。

分析

回文自动机裸题
好像可以用manacher+后缀自动机做
回文自动机的算法学习:Palindromic Tree——回文树【处理一类回文串问题的强力工具】
没办法写得更好了。

代码

/**************************************************************
    Problem: 3676
    User: 2014lvzelong
    Language: C++
    Result: Accepted
    Time:752 ms
    Memory:37616 kb
****************************************************************/
 
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#include<cmath>
using namespace std;
const int N = 310000;
long long ans;
int len[N], f[N], a[N], val[N], ch[N][26], last, sz, n;
void PDT_pre() {
    f[last = sz = 0] = 1;
    len[++sz] = a[n = 0] = -1; 
}
 
void Extend(int c) {
    a[++n] = c; int p, np, x;
    for(p = last; a[n - len[p] - 1] != a[n]; p = f[p]) ;
    if(!ch[p][c]) {
        len[np = ++sz] = len[p] + 2; 
        for(x = f[p]; a[n - len[x] - 1] != a[n]; x = f[x]) ;
        f[np] = ch[x][c]; ch[p][c] = np;
    }
    ++val[last = ch[p][c]];
}
 
void work() {
    char ch = getchar();
    while(ch < 'a' || ch > 'z') ch = getchar();
    for(;ch >= 'a' && ch <= 'z'; ch = getchar()) Extend(ch - 'a');
} 
 
int main() {
    PDT_pre();
    work(); 
    for(int i = sz; i >= 2; --i) {
        val[f[i]] += val[i];
        ans = max(ans, 1LL * val[i] * len[i]);
    }
    printf("%lld\n", ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值