bzoj2821: 作诗(Poetize)
Description
神犇SJY虐完HEOI之后给傻×LYD出了一题:SHY是T国的公主,平时的一大爱好是作诗。由于时间紧迫,SHY作完诗
之后还要虐OI,于是SHY找来一篇长度为N的文章,阅读M次,每次只阅读其中连续的一段[l,r],从这一段中选出一
些汉字构成诗。因为SHY喜欢对偶,所以SHY规定最后选出的每个汉字都必须在[l,r]里出现了正偶数次。而且SHY认
为选出的汉字的种类数(两个一样的汉字称为同一种)越多越好(为了拿到更多的素材!)。于是SHY请LYD安排选
法。LYD这种傻×当然不会了,于是向你请教……问题简述:N个数,M组询问,每次问[l,r]中有多少个数出现正偶
数次。
Input
输入第一行三个整数n、c以及m。表示文章字数、汉字的种类数、要选择M次。第二行有n个整数,每个数Ai在[1, c
]间,代表一个编码为Ai的汉字。接下来m行每行两个整数l和r,设上一个询问的答案为ans(第一个询问时ans=0),
令L=(l+ans)mod n+1, R=(r+ans)mod n+1,若L>R,交换L和R,则本次询问为[L,R]。
Output
输出共m行,每行一个整数,第i个数表示SHY第i次能选出的汉字的最多种类数。
Sample Input
5 3 5
1 2 2 3 1
0 4
1 2
2 2
2 3
3 5
Sample Output
2
0
0
0
1
HINT
对于100%的数据,1<=n,c,m<=10^5
分析
直接分块。
预处理出所有块之间的答案,用前缀和预处理出每个数在某段区间内的出现次数。
询问的时候分情况考虑。
如果l,r中间没块直接暴力扫过去。
否则先用块内的答案,然后不完整块扫一遍,结合每个数在完整块的出现次数统计答案即可。
代码
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#include<vector>
using namespace std;
const int N = 100010, M = 318;
int read() {
char ch = getchar(); int x = 0, f = 1;
while(ch < '0' || ch > '9') {if(ch == '-') f = -1; ch = getchar();}
while(ch >= '0' && ch <= '9') {x = x * 10 + ch - '0'; ch = getchar();}
return x * f;
}
int v[N], cnt[N], val[N], bl[N], f[M][M], s[M][N], blo, n, id;
void Add(int l, int r) {for(int i = l;i <= r; ++i) ++cnt[v[i]];}
void Solve(int l, int r, int *sl, int *sr, int &ans) {
for(int i = l;i <= r; ++i)
if(cnt[v[i]]) {
int p = sr[v[i]] - sl[v[i]], c = (p + cnt[v[i]]) & 1;
if(!p) {if(!c) ++ans;}
else if((p & 1) ^ c)
ans += p & 1 ? 1 : -1;
cnt[v[i]] = 0;
}
}
int query(int l, int r) {
int ans = 0;
if(bl[l] == bl[r] || bl[l] + 1 == bl[r]) {
for(int i = l;i <= r; ++i) ++cnt[v[i]];
for(int i = l;i <= r; ++i) {
if(cnt[v[i]] && !(cnt[v[i]] & 1)) ++ans;
cnt[v[i]] = 0;
}
return ans;
}
ans = f[bl[l] + 1][bl[r] - 1];
Add(l, bl[l] * blo); Add((bl[r] - 1) * blo + 1, r);
Solve(l, bl[l] * blo, s[bl[l]], s[bl[r] - 1], ans);
Solve((bl[r] - 1) * blo + 1, r, s[bl[l]], s[bl[r] - 1], ans);
return ans;
}
int main() {
n = read(); read(); int m = read(); blo = sqrt(n);
for(int i = 1;i <= n; ++i) bl[i] = (i - 1) / blo + 1;
for(int i = 1;i <= n; ++i) {
v[i] = read();
for(int j = bl[i]; j <= bl[n]; ++j)
++s[j][v[i]];
} int tot = 0;
for(int i = 1;i <= bl[n]; ++i) {
for(int j = (i - 1) * blo + 1; j <= n; ++j) {
if(cnt[v[j]] & 1) ++tot;
else if(cnt[v[j]] > 0) --tot;
++cnt[v[j]];
f[i][bl[j]] = tot;
}
memset(cnt, 0, sizeof(cnt)), tot = 0;
}
int ans = 0;
while(m--) {
int l = (read() + ans) % n + 1, r = (read() + ans) % n + 1;
if(l > r) swap(l, r);
printf("%d\n", ans = query(l, r));
}
return 0;
}