bzoj3739: DZY loves math VIII 莫比乌斯反演

bzoj3739: DZY loves math VIII

Description

在XYZ的dzy loves math6问世后,dzy一直觉得这道题答案太大,一点都不优美,于是他随手在外面套上一个μ。同时,他又觉得输入两个数实在太麻烦,于是题目变成了,你能解决这个问题吗?
这里写图片描述

Input

第一行一个整数T表示询问组数,接下来T行每行一个整数n。

Output

对于每一个询问输出一行表示答案

Sample Input

1
2

Sample Output

0

HINT

T<=10^3 n<=10^7

分析

首先要注意到当且仅当 gcd(i,j)==1 g c d ( i , j ) == 1 才有贡献。
于是变成
ans=niijμ(ij)[gcd(i,j)==1] a n s = ∑ i n ∑ j i μ ( i j ) [ g c d ( i , j ) == 1 ]
=niijμ(i)μ(j)k|i,k|jμ(k) = ∑ i n ∑ j i μ ( i ) μ ( j ) ∑ k | i , k | j μ ( k )
注意到这里不好直接枚举 k k ,因为如果枚举k
=nkμ(k)nkiijμ(ik)μ(jk) = ∑ k n μ ( k ) ∑ i n k ∑ j i μ ( i ∗ k ) μ ( j ∗ k )
=nkμ(k)(nkiμ(ik)nkjμ(jk)+nkxμ2(xk))/2 = ∑ k n μ ( k ) ( ∑ i n k μ ( i ∗ k ) ∑ j n k μ ( j ∗ k ) + ∑ x n k μ 2 ( x ∗ k ) ) / 2
那个 k k 很不好处理,虽然可以得到一个O(Tnlogn)的算法(暴力处理 μ(ik) ∑ μ ( i ∗ k ) , μ2(ik) ∑ μ 2 ( i ∗ k ) ),但是复杂度不可以接受。
这个时候我们注意到 T T 比较大,所以需要设计 一个类似递推的方法。
故先枚举i,再枚举 k k
ans=inμ(i)k|iμ(k)jikμ(jk)
这样的好处是,后面的 k|iμ(k)ikjμ(jk) ∑ k | i μ ( k ) ∑ j i k μ ( j ∗ k ) 只和 i i 有关,每次只要在之前答案的基础上计算k|iμ(k)jikμ(jk)
还有一个优秀的性质是,当且仅当 i i 时square-free(无平方因子),才会对答案有贡献,否则有ans[n]=ans[n1](μ(n)==0)
107<2357111315171923 10 7 < 2 ∗ 3 ∗ 5 ∗ 7 ∗ 11 ∗ 13 ∗ 15 ∗ 17 ∗ 19 ∗ 23 这意味着每个数最多只有9个不同的素因子,所以枚举 i i 的复杂度变成了O(29)
现在的问题变成了如何快速求出 k|iμ(k)ikjμ(jk) ∑ k | i μ ( k ) ∑ j i k μ ( j ∗ k )
枚举 k k 的复杂度是O(i)的。
剩下处理 f(i,k)=ikjμ(jk)(k|i) f ( i , k ) = ∑ j i k μ ( j ∗ k ) ( k | i )
注意到 (k|i) ( k | i ) ,故对于每个 k k 只需要考虑f(i+k,k) f(i,k) f ( i , k ) 的关系。
显然有 f(i+k,k)=ik+1jμ(jk)=f(i,k)+μ(i+k) f ( i + k , k ) = ∑ j i k + 1 μ ( j ∗ k ) = f ( i , k ) + μ ( i + k )
于是我们仅仅记录 f(k) f ( k ) 的值,随 i i 的变化边做边更新即可。
复杂度O(29n+T),优秀的算法!

分析

#include<cstdio>
const int N = 1e7 + 10;
int f[N], u[N], pr[N], p[N], s[N], q[N], mn[N], tp;
void Pre(int N) {
    u[1] = 1;
    for(int i = 2;i <= N; ++i) {
        if(!mn[i]) pr[++tp] = i, mn[i] = i, u[i] = -1;
        for(int j = 1;j <= tp && i * pr[j] <= N; ++j) {
            mn[i * pr[j]] = pr[j];
            if(i % pr[j]) u[i * pr[j]] = -u[i];
            else break;
        }
    }
}
int Dfs(int k, int x, int v) {
    if(k > tp) return f[x] += v, u[x] * f[x];
    return Dfs(k + 1, x * p[k], v) + Dfs(k + 1, x, v);
}
int main() {
    int T; scanf("%d", &T); int n = 0;
    for(int i = 1;i <= T; ++i)
        scanf("%d", &q[i]), n < q[i] ? n = q[i] : 0;
    Pre(n);
    for(int i = 1;i <= n; ++i) {
        s[i] = s[i - 1];
        if(u[i]) {
            tp = 0; for(int x = i; x != 1; x /= mn[x]) p[++tp] = mn[x];
            s[i] += u[i] * Dfs(1, 1, u[i]);
        }
    }
    for(int i = 1;i <= T; ++i) printf("%d\n", s[q[i]]);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值