仙人掌&圆方树学习笔记+简单应用

本文详细介绍了仙人掌图和圆方树的概念,包括它们的定义、性质、构造方法以及在解决实际问题中的应用,如求解最大独立集和最短路。通过实例分析展示了如何利用圆方树简化问题,并强调了在处理圆方树问题时维护圆方边的重要性。
摘要由CSDN通过智能技术生成

仙人掌&圆方树学习笔记

前言

一直觉得仙人掌和圆方树是非常高深的算法。
直到连续随机跳题跳到两道。我受不了啦!!!
于是点进了一个链接。(传销现场有木有啊!)

推荐链接戳这里

然后发现并没有想象中那么难。
而且,,,
很好玩。
日常赛前学算法(大雾
退役之前还是多多益善一波吧,错过了可能就遇不上了!

定义:仙人掌

任意一条边至多在一个环里的无向联通图
在这里插入图片描述

定义:仙人掌的圆方树
  • 仙人掌 G = ( V , E ) G = (V, E) G=(V,E)的圆方树 T = ( V T , E T ) T = (V_T , E_T) T=(VT,ET)为满足以下条件的无向图:
    V T = R T ∪ S T , R T = V , R T ∩ S T = ∅ V_ T = R_ T ∪ S_ T , R_ T = V, R_ T ∩ S_ T = ∅ VT=RTST,RT=V,RTST=,我们称 R T R_ T RT 集合为圆点、 S T S_ T ST集合为方点
    ∀ e ∈ E \forall e \in E eE,若 e e e 不在任何简单环中,则 e ∈ E T e ∈ E_T eET
    对于每个仙人掌中的简单环 R R R,存在方点 p R ∈ S T p_ R ∈ S_ T pRST ,并且 ∀ p ∈ R \forall p \in R pR满足 ( p R , p ) ∈ E T (p _R , p) \in E_ T (pR,p)ET ,即对每个环建方点连所有点

严格的定义总是格外地难懂啊。
简单地说,把除了环上的所有边保留。对于每个环,新建一个方点,把所有环上的点与这个方点连边,删除原有的环上的边。
在这里插入图片描述

如何证明圆方树是一棵树?
首先显然,它仍然联通。
其次,对于每个环,新建的边数等于删除的边数,点数多了一个。
所以最后一定是一棵树。

圆方树的构造与性质

构造就是 T a r j a n Tarjan Tarjan缩环啊。
性质:

  • 方点不会和方点连边。(不然就有一条边在两个环里了)
  • 圆方数是一颗无根树,无论以仙人掌的哪个根构建出来的圆方树都是一样地,进一步地,仙人掌的圆方树和仙人掌是一一对应的
  • 定义以 r r r为根的仙人掌的 p p p子仙人掌为除去 p p p r r r的所有简单路径后, p p p所在联通块,则
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值