luoguP4389 付公主的背包 多项式求逆 多项式求ln 多项式求exp 生成函数

luoguP4389 付公主的背包

题目传送门

分析

神仙题系列。。。
首先写出每件商品的生成函数,假设体积为 V V V
A ( x ) = ∑ i = 0 ∞ x i v = 1 1 − x v A(x)=\sum_{i=0}^{\infty}x^{iv}=\frac{1}{1-x^{v}} A(x)=i=0xiv=1xv1
答案就是
A n s ( x ) ≡ ∏ 1 1 − x v i ( m o d x m + 1 ) Ans(x)\equiv\prod\frac{1}{1-x^{vi}}(mod x^{m+1}) Ans(x)1xvi1(modxm+1)
裸跑 N T T NTT NTT就是 O ( n m l o g ) O(nmlog) O(nmlog)
乘积的处理比较麻烦,尝试转化成加和,两边同时取对数
l n ( A n s ( x ) ) ≡ ∑ l n ( 1 1 − x v i ) ( m o d x m + 1 ) ln(Ans(x))\equiv\sum ln(\frac{1}{1-x^{v_i}})(mod x^{m+1}) ln(Ans(x))ln(1xvi1)(modxm+1)
尝试把 l n ( 1 1 − x v i ) ln(\frac{1}{1-x^{v_i}}) ln(1xvi1)泰勒展开,既然是对多项式求 l n ln ln,肯定是先求导后积分。
l n ′ ( 1 1 − x v ) = − l n ′ ( 1 − x v ) = − ( − v x v − 1 ) ⋅ ( 1 1 − x v ) = v ∑ i = 0 ∞ x v ( i + 1 ) − 1 = ∑ i = 1 ∞ v x v i − 1 ln'(\frac{1}{1-x^{v}})=-ln'(1-x^v)=-(-vx^{v-1})\cdot(\frac{1}{1-x^v})=v\sum_{i= 0}^{\infty}x^{v(i+1)-1}=\sum_{i= 1}^{\infty}vx^{vi-1} ln(1xv1)=ln(1xv)=(vxv1)(1xv1)=vi=0xv(i+1)1=i=1vxvi1
积分回去之后发现是
∫ l n ′ ( 1 1 − x v ) = ∑ i = 1 ∞ x v i i \int ln'(\frac{1}{1-x^{v}})= \sum_{i= 1}^{\infty}\frac{x^{vi}}{i} ln(1xv1)=i=1ixvi
非常漂亮的一个式子。
注意到我们仅仅需要考虑 m m m以内的 x x x
而上面的式子可以采用调和级数求和。
于是我们只需要在 O ( m l o g m ) O(mlogm) O(mlogm)的时间内就可以求出 l n ( A n s ( x ) ) ln(Ans(x)) ln(Ans(x))
然后多项式exp即可。

多项式exp

还是一样的分治思想
f ( x ) = e A ( x ) f(x)=e^{A(x)} f(x)=eA(x)
l n ( f ( x ) ) − A ( x ) = 0 ln(f(x))-A(x)=0 ln(f(x))A(x)=0
g ( f ( x ) ) = l n ( f ( x ) ) − A ( x ) g(f(x))=ln(f(x))-A(x) g(f(x))=ln(f(x))A(x)
假设我们已经求了
f 0 ( x ) ≡ e A ( x ) ( m o d    x n ) f_0(x)\equiv e^{A(x)}(\mod x^{n}) f0(x)eA(x)(modxn)
希望求
f ( x ) ≡ e A ( x ) ( m o d    x 2 n ) f(x)\equiv e^{A(x)}(\mod x^{2n}) f(x)eA(x)(modx2n)
那么
g ( f ( x ) ) ≡ 0 ( m o d    x 2 n ) g(f(x))\equiv0(\mod x^{2n}) g(f(x))0(modx2n)
考虑在 f 0 f_0 f0处泰勒展开
g ( f ( x ) ) ≡ g ( f 0 ( x ) ) + g ′ ( f 0 ( x ) ) ( f ( x ) − f 0 ( x ) ) + g ′ ′ ( f ( x ) ) 2 ( f ( x ) − f 0 ( x ) ) 2 ⋯ ( m o d    x 2 n ) g(f(x))\equiv g(f_0(x)) + g'(f_0(x))(f(x)-f_0(x))+\frac{g''(f(x))}{2}(f(x)-f_0(x))^2 \cdots(\mod x^{2n}) g(f(x))g(f0(x))+g(f0(x))(f(x)f0(x))+2g(f(x))(f(x)f0(x))2(modx2n)
注意到
f ( x ) ≡ f 0 ( x ) ( m o d    x n ) f(x)\equiv f_0(x)(\mod x^n) f(x)f0(x)(modxn)
所以
f ( x ) − f 0 ( x ) ≡ 0 ( m o d    x n ) f(x)-f_0(x)\equiv 0(\mod x^n) f(x)f0(x)0(modxn)
这就意味着, f ( x ) − f ( x 0 ) f(x)-f(x_0) f(x)f(x0) m o d    x 2 n \mod x^{2n} modx2n意义下的最低幂次不小于 x n x^n xn
所以平方之后的最低幂次不小于 x 2 n x^{2n} x2n,在 m o d    x 2 n \mod x^{2n} modx2n意义下为 0 0 0
所以
g ( f ( x ) ) ≡ g ( f 0 ( x ) ) + g ′ ( f 0 ( x ) ) ( f ( x ) − f 0 ( x ) ) ( m o d    x 2 n ) ≡ 0 g(f(x))\equiv g(f_0(x)) + g'(f_0(x))(f(x)-f_0(x))(\mod x^{2n})\equiv 0 g(f(x))g(f0(x))+g(f0(x))(f(x)f0(x))(modx2n)0
f ( x ) ≡ f 0 ( x ) − g ( f 0 ( x ) ) g ′ ( f 0 ( x ) ) ( m o d    x 2 n ) f(x)\equiv f_0(x)-\frac{g(f_0(x))}{g'(f_0(x))}(\mod x^{2n}) f(x)f0(x)g(f0(x))g(f0(x))(modx2n)
g ′ ( f 0 ( x ) ) = 1 f 0 ( x ) g'(f_0(x))=\frac{1}{f_0(x)} g(f0(x))=f0(x)1 代入
f ( x ) ≡ f 0 ( x ) ( 1 − l n ( f 0 ( x ) ) + A ( x ) ) ( m o d    x 2 n ) f(x)\equiv f_0(x)(1-ln(f_0(x))+A(x))(\mod x^{2n}) f(x)f0(x)(1ln(f0(x))+A(x))(modx2n)
分治+多项式求ln+NTT即可。
复杂度 T ( n ) = T ( n 2 ) + O ( n l o g n ) = T ( n l o g n ) T(n)=T(\frac{n}{2})+O(nlogn)=T(nlogn) T(n)=T(2n)+O(nlogn)=T(nlogn)

代码

// luogu-judger-enable-o2
#include<bits/stdc++.h>
const int N = 524288, P = 998244353;
int ri() {
	char c = getchar(); int x = 0, f = 1; for(;c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
	for(;c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) - '0' + c; return x * f;
}
int L, InvL, R[N], w[N], v[N], a[N], b[N];
int fix(int x) {return (x >> 31 & P) + x;}
int add(int a, int b) {return a += b, a >= P ? a - P : a;}
int mul(int a, int b) {return 1LL * a * b % P;}
int Pow(int x, int k) {
    int r = 1;
    for(;k; x = mul(x, x), k >>= 1)
        if(k & 1)
            r = mul(r, x);
    return r;
}
int Inv(int x) {return Pow(x, P - 2);}
void Pre(int m) {
    int x = 0; L = 1;
    for(;(L <<= 1) < m; ++x) ;
    for(int i = 1;i < L; ++i) 
        R[i] = R[i >> 1] >> 1 | (i & 1) << x;
    int wn = Pow(3, (P - 1) / L); w[0] = 1;
    for(int i = 1;i < L; ++i)
        w[i] = mul(w[i - 1], wn);
    InvL = Inv(L);
}
void DFT(int *F) {
    for(int i = 0;i < L; ++i) 
        if(i < R[i])
            std::swap(F[i], F[R[i]]);
    for(int i = 1, d = L >> 1; i < L; i <<= 1, d >>= 1)
        for(int j = 0;j < L; j += i << 1) {
            int *l = F + j, *r = F + j + i, *p = w, tp;
            for(int k = i;k--; ++l, ++r, p += d)
                tp = mul(*r, *p), *r = fix(*l - tp), *l = add(*l, tp);
        }
}
void Inv(const int A[], int *B, int n) {
    static int C[N], D[N];
    B[0] = Inv(A[0]); int m = 2;
    for(; m >> 1 < n; m <<= 1) {
        Pre(m << 1);
        for(int i = 0;i < m; ++i)
            C[i] = A[i], C[i + m] = 0;
        for(int i = 0;i < m >> 1; ++i)
        	D[i] = B[i];
        for(int i = m >> 1;i < m << 1; ++i)
        	D[i] = 0;
        DFT(C); DFT(D);
        for(int i = 0;i < L; ++i)
            C[i] = mul(fix(2 - mul(C[i], D[i])), D[i]);
        DFT(C);
        for(int i = 0;i < m; ++i)
            B[i] = mul(C[L - i & L - 1], InvL);
    }
}
void Mul(int *A, int *B, int *C, int m) {
	Pre(m << 1);
	DFT(A); DFT(B);
	for(int i = 0;i < L; ++i)
		C[i] = mul(A[i], B[i]);
	DFT(C);
}
void Deri(int *A, int *B, int m) {
	for(int i = 0;i < m - 1; ++i)
		B[i] = mul(A[i + 1], i + 1);
	B[m] = 0;
}
void Inte(int *A, int m) {
	for(int i = m - 1;i; --i)
		A[i] = mul(A[i - 1], Inv(i));
	A[0] = 0;
}
void Ln(int *A, int m) {
	static int dA[N], G[N];
	Deri(A, dA, m);
	Inv(A, G, m);
	Mul(dA, G, dA, m);
	for(int i = 0;i < m; ++i)
		G[i] = mul(dA[L - i & L - 1], InvL);
	Inte(G, m);
	for(int i = 0;i < m; ++i)
		A[i] = G[i];
}
void Exp(int *A, int *B, int n) {
	static int C[N], D[N];
	B[0] = 1; int m = 2;
	for(;m >> 1 <= n; m <<= 1) {
		for(int i = 0;i < m >> 1; ++i)
			C[i] = D[i] = B[i];
		for(int i = m >> 1; i < m << 1; ++i)
			C[i] = D[i] = 0;
		Ln(C, m);
		for(int i = 0;i < m; ++i)
			C[i] = fix(A[i] - C[i]);
		C[0] = add(C[0], 1);
		Mul(C, D, C, m);
		for(int i = 0;i < m; ++i)
			B[i] = mul(C[L - i & L - 1], InvL);
		//for(int i = 0;i < m; ++i)
	//		printf("%d ", B[i]); puts("");
	}
}
int main() {
	int n = ri(), m = ri();
	for(int i = 1;i <= n; ++i) 
		++v[ri()];
	for(int i = 1;i <= m; ++i)
		if(v[i])
			for(int j = i;j <= m; j += i)
				a[j] = add(a[j], mul(v[i], Inv(j / i)));
	Exp(a, b, m);
	for(int i = 1;i <= m; ++i)
		printf("%d\n", b[i]);
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值