【论文解读】Robust Collaborative 3D Object Detection in Presence of Pose Errors

本文介绍了一种新的协作框架CoAlign,通过代理-对象姿态图优化和多尺度数据融合策略,解决姿态误差对3D对象检测性能的影响。CoAlign无需精确姿态监督,适用于训练和测试阶段,显著提高了检测准确性和鲁棒性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

协同3D对象检测利用多个代理之间的信息交换,以在存在诸如遮挡之类的传感器损伤的情况下提高对象检测的准确性。然而,在实践中,由于定位不完善而导致的姿态估计误差会导致空间消息错位,并显著降低协作性能。为了减轻姿态误差的不利影响,我们提出了Align,这是一种新的混合协作框架,对未知的姿态误差具有鲁棒性。所提出的解决方案依赖于一种新的代理-对象姿态图建模来增强协作代理之间的姿态一致性。此外,我们采用多尺度数据融合策略来聚合多个空间分辨率的中间特征。与之前需要地面实况姿态进行训练监督的工作相比,我们提出的CoAlign更实用,因为它在训练中不需要任何地面实况姿态监督,也没有对姿态误差做出具体假设。在多个数据集上对所提出的方法进行了广泛的评估,证明CoAlign显著降低了相对定位误差,并在存在姿态误差时实现了最先进的检测性能。代码可供研究界使用,网址为https://github.com/yifanlu0227/CoAlign.

引言

为了相互共享有效信息,多个代理需要精确的姿势来同步他们的个人致的空间坐标系中的数据,这是协作的基础。然而,每个代理的定位模块估计的6个DoF姿态在实践中并不完美,导致了所需的相对姿态误差。这种相对姿态误差将从根本上降低协作质量。为了解决这个问题,以前的工作考虑了各种方法来提高姿态鲁棒性[15],[16],[17],[18]。例如,[17]设计了姿态回归模块来学习姿态校正;[18]使用3D点的语义标签来寻找逐点对应关系。然而,这些方法需要训练数据中的真实姿态。尽管训练数据中的姿势错误可以离线纠正,但这种标记过程可能代价高昂且不完美。
受此限制,我们提出了一种新的混合协作框架CoAlign࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值