论文解读 Saliency Weighted Convolutional Features for Instance Search
Saliency Weighted Convolutional Features for Instance Search,E Mohedano,K Mcguinness,X Giroinieto,arXiv.org
1 Contribution
1 We propose a novel approach to instance search combining saliency weighting over off-the-shelf convolutional features which are aggregated using a large vocabulary with a bag of words model.
2 We demonstrate that this weighting scheme gives outperforms all other state of the art on the challenging INSTRE benchmark.
3 higher performance on saliency benchmarks does not necessary equate to improved performance when used in the instance search task
我对这篇的理解其实主要是利用显著性检测给BLCV过程赋一个权重,类似于文件检索里BOW中的tf-idf权重机制。
2 Pipeline
在上图中,Smantic feature相当于BLCV的过程,详情查看上一篇博文。Saliency 相当于一个显著性检测网络,可以得到一张图片的显著性结果图,然后利用显著性结果图给BLCV过程中的到的Assignment map赋予权值,然后再统计词频生成最终的特征描述。
3 Saliency model
此图介绍了不同显著性检测model在MIT300的检测效果
此图可视化了显著性检测model的结果
4 Experiments
1 Aggregation methods
2 Comparison with the state-of-the-art
不加查询扩展的实验对比结果
加了查询扩展的实验对比结果3 结果展示