论文解读 Saliency Weighted Convolutional Features for Instance Search

本文介绍了一种新的实例搜索方法,通过结合显著性加权与现成的卷积特征,并使用大量词汇与词袋模型进行聚合。该方案在具有挑战性的INSTRE基准上表现出超越现有技术的状态。此外,文章还探讨了显著性检测模型的效果及其在实例搜索任务中的应用。
摘要由CSDN通过智能技术生成

Saliency Weighted Convolutional Features for Instance Search,E Mohedano,K Mcguinness,X Giroinieto,arXiv.org


1 Contribution

  • 1 We propose a novel approach to instance search combining saliency weighting over off-the-shelf convolutional features which are aggregated using a large vocabulary with a bag of words model.

  • 2 We demonstrate that this weighting scheme gives outperforms all other state of the art on the challenging INSTRE benchmark.

  • 3 higher performance on saliency benchmarks does not necessary equate to improved performance when used in the instance search task

    我对这篇的理解其实主要是利用显著性检测给BLCV过程赋一个权重,类似于文件检索里BOW中的tf-idf权重机制。


2 Pipeline


这里写图片描述

    在上图中,Smantic feature相当于BLCV的过程,详情查看上一篇博文。Saliency 相当于一个显著性检测网络,可以得到一张图片的显著性结果图,然后利用显著性结果图给BLCV过程中的到的Assignment map赋予权值,然后再统计词频生成最终的特征描述。


3 Saliency model


这里写图片描述
此图介绍了不同显著性检测model在MIT300的检测效果


这里写图片描述
此图可视化了显著性检测model的结果


4 Experiments

  • 1 Aggregation methods


    这里写图片描述

  • 2 Comparison with the state-of-the-art


    这里写图片描述
    不加查询扩展的实验对比结果

    这里写图片描述
    加了查询扩展的实验对比结果

  • 3 结果展示


    这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值