import numpy as np
import matplotlib.pyplot as plt
import csv
import os
from pathlib import Path
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
def encode_user_apps():
print("Installed apps encoder begin.")
user2apps_file = 'Algorithm/Structured_Data/tuid_app_1k_202109271710.csv'
user2apps_df = pd.read_csv(os.path.join(Path.home(), user2apps_file), quoting=csv.QUOTE_NONE, encoding='utf-8')#, error_bad_lines=False)
user2apps_file = os.path.join(Path.home(), 'Algorithm/Structured_Data/Index/user2apps.original.pkl')
pd.to_pickle(user2apps_df, user2apps_file)
user2apps_df = pd.read_pickle(user2apps_file)
print(user2apps_df.shape)
app_threshold_count = 1
skip_apps = ['极速版', '小说', '微信', '支付宝', '拼多多', '淘宝', '抖音', '百度', 'QQ', 'QQ浏览器', 'UC浏览器', '高德地图', '百度地图', '腾讯地图',
'一键锁屏', '计算器', '应用宝', '天气', '指南针', '录音机', '游戏中心', '便签', '录音', '音乐', '日历', '阅读', '健康', '邮件', '书城', '翻译',
'提醒', '字典', '钱包', '相册', '笔记', '使用技巧', '意见反馈', '用户手册', '扫一扫', '系统可卸载应用找回', 'Google通讯录同步', '内容中心', '一键清理管家',
'游戏助手', '游戏服务', '华为穿戴', '手机营业厅', '认证助手', '备份与恢复', 'GooglePlay商店', 'Google', '地图', 'Google服务框架', '提示',
'记事本', '一键优化', '华为应用市场', '手机工具箱', '猎豹清理大师', '应用商店', '主题商店', '手电筒', '极速清理', '华为官方主题引擎', '应用中心',
'运动健康', '浏览器', '万年历', '收音机', '发现精彩', '荣耀商城', 'HMSCore', '必备应用', '360手机助手', '文件台', '天气预报', '相册管家', 'Google日历同步',
'360清理大师', '掌上营业厅', 'QQ安全中心', '三方应用异常分析', '华为主题动态引擎', '小米社区', '讯飞输入法小米版', '讯飞输入法', '电信营业厅', '系统语音引擎',
'垃圾清理', '电子邮件
基于KMeans根据用户APP安装列表进行用户分群
最新推荐文章于 2023-12-10 00:13:50 发布
本文探讨如何运用KMeans算法对用户的APP安装列表进行分析,以实现用户分群。通过聚类,我们可以揭示不同用户群体的行为模式,为精准营销和个性化推荐提供依据。
摘要由CSDN通过智能技术生成