基于KMeans根据用户APP安装列表进行用户分群

本文探讨如何运用KMeans算法对用户的APP安装列表进行分析,以实现用户分群。通过聚类,我们可以揭示不同用户群体的行为模式,为精准营销和个性化推荐提供依据。
摘要由CSDN通过智能技术生成

import numpy as np
import matplotlib.pyplot as plt

import csv

import os
from pathlib import Path

import pandas as pd

from sklearn.cluster import KMeans
from sklearn.decomposition import PCA

def encode_user_apps():
    print("Installed apps encoder begin.")

    user2apps_file = 'Algorithm/Structured_Data/tuid_app_1k_202109271710.csv'

    user2apps_df = pd.read_csv(os.path.join(Path.home(), user2apps_file), quoting=csv.QUOTE_NONE, encoding='utf-8')#, error_bad_lines=False)

    user2apps_file = os.path.join(Path.home(), 'Algorithm/Structured_Data/Index/user2apps.original.pkl')
    pd.to_pickle(user2apps_df, user2apps_file)
    user2apps_df = pd.read_pickle(user2apps_file)
    print(user2apps_df.shape)

    app_threshold_count = 1
    skip_apps = ['极速版', '小说', '微信', '支付宝', '拼多多', '淘宝', '抖音', '百度', 'QQ', 'QQ浏览器', 'UC浏览器', '高德地图', '百度地图', '腾讯地图',
                 '一键锁屏', '计算器', '应用宝', '天气', '指南针', '录音机', '游戏中心', '便签', '录音', '音乐', '日历', '阅读', '健康', '邮件', '书城', '翻译',
                 '提醒', '字典', '钱包', '相册', '笔记', '使用技巧', '意见反馈', '用户手册', '扫一扫', '系统可卸载应用找回', 'Google通讯录同步', '内容中心', '一键清理管家',
                 '游戏助手', '游戏服务', '华为穿戴', '手机营业厅', '认证助手', '备份与恢复', 'GooglePlay商店', 'Google', '地图', 'Google服务框架', '提示',
                 '记事本', '一键优化',  '华为应用市场', '手机工具箱', '猎豹清理大师', '应用商店', '主题商店', '手电筒', '极速清理', '华为官方主题引擎', '应用中心',
                 '运动健康', '浏览器', '万年历', '收音机', '发现精彩', '荣耀商城', 'HMSCore', '必备应用', '360手机助手', '文件台', '天气预报', '相册管家', 'Google日历同步',
                 '360清理大师', '掌上营业厅', 'QQ安全中心', '三方应用异常分析', '华为主题动态引擎', '小米社区', '讯飞输入法小米版', '讯飞输入法', '电信营业厅', '系统语音引擎',
                 '垃圾清理', '电子邮件
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值