Tree Construction

Consider a two-dimensional space with a set of points (xi, yi) that satisfy xi < xj and yi > yj for all i < j. We want to have them all connected by a directed tree whose edges go toward either right (x positive) or upward (y positive). The figure below shows an example tree. 






Write a program that finds a tree connecting all given points with the shortest total length of edges.
 
Input
The input begins with a line that contains an integer n (1 <= n <= 1000), the number of points. Then n lines follow. The i-th line contains two integers xi and yi (0 <= xi, yi <= 10000), which give the coordinates of the i-th point.
 
Output
Print the total length of edges in a line.
 
Sample Input
5
1 5
2 4
3 3
4 2
5 1
1
10000 0 
 
Sample Output
12


题目分析:一棵树只能向上和向右生长,求它能将所有给定二维坐标点连接起来的最短长度

                    刚开始题目没怎么看懂,纠结了一段时间,没想到怎么做,后来发现者可以用dp来

                   做,dp[i][j]表示从i到j所需要的最短距离,则dp[i][j]=dp[i][k]+dp[k+1][j]+abs(x[i]-x[k+1])+abs(y[k]-y[j])

                   显然,数据范围有点大枚举k的话时间复杂度为O(n^3),必定超时,于是需要优化,单调队列由于

                   绝对值的干扰不行,斜率优化貌似也行不通,于是想到了四边形不等式的优化,将决策k的范围

                   缩小,可以证明,该动态方程式具有单调性的,当a<b<c<d时,dp[a][c]+dp[b][d]<=dp[a][d]+dp[b][c];

                  因此决策k可缩小在k[i][j-1]和k[i+1][j]中,如此一来,效率大幅度提高,不会超时了。

代码:

#include<iostream>
using namespace std;
int dp[1005][1005],mm[1005][1005];
int main()
{
    int i,n,j;
    int x[1005],y[1005];
    while (~scanf("%d",&n))
    {
        for (i=1;i<=n;i++)
        {
            scanf("%d%d",&x[i],&y[i]);
            mm[i][i]=i;
        }
        memset(dp,0,sizeof(dp));
        for (int l=2;l<=n;l++)
        for (i=1;i<=n-l+1;i++)
        {
            dp[i][i+l-1]=999999;
            for (j=mm[i][i+l-2];j<=mm[i+1][i+l-1];j++)   //在可能最优决策中枚举
            {
                if (dp[i][i+l-1]>dp[i][j]+dp[j+1][i+l-1]+abs(x[i]-x[j+1])+abs(y[j]-y[i+l-1]))
                {
                    dp[i][i+l-1]=dp[i][j]+dp[j+1][i+l-1]+abs(x[i]-x[j+1])+abs(y[j]-y[i+l-1]);
                    mm[i][i+l-1]=j;  //记下每次的最优决策
                }
            }
        }
        printf("%d\n",dp[1][n]);
    }
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是使用单步前瞻搜索和最大信息增益作为构造准则构建二层决策树的步骤,包括熵的计算和每个节点的构造决策: 假设我们有一个数据集,其中包含3个特征值 `A, B, C` 和一个目标变量 `Y`,我们将使用决策树来解决分类问题。 1. 计算初始数据集的熵 `H(Y)`。这可以通过计算目标变量 `Y` 在数据集中每个类别的概率分布,并将其应用于熵的公式来完成。 2. 对于每个特征值 `A, B, C`,计算其信息增益 `IG(Y, A/B/C)`。这可以通过计算数据集在给定特征下的条件熵,并将其与初始熵相减得到。 3. 选择具有最大信息增益的特征作为第一个节点。假设我们选择了特征 `A`,并创建了一个根节点。 4. 对于选定的特征 `A`,计算其可能取值(例如,`A=0` 和 `A=1`)下的条件熵。这可以通过将数据集分成对应于每个取值的子集,并计算每个子集的熵来完成。 5. 对于每个可能取值下的条件熵,选择具有最小条件熵的特征作为第二级节点。假设我们选择了 `A=0` 时的特征 `B` 作为第二级节点。 6. 重复步骤4和步骤5,对于第二级节点的每个可能取值,计算其下一级节点。 7. 继续扩展树,直到达到所需的层数(在这种情况下是2级),或者无法继续分割节点。 8. 最终得到一个具有2层的决策树,其中包含根节点、第一级节点和第二级节点。 以上是使用单步前瞻搜索和最大信息增益构造二层决策树的步骤。根据具体的数据集和特征值,可能会有不同的决策和分裂点选择。这只是一个示例,你可以根据实际情况进行调整和扩展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值