莫烦强化学习笔记整理(八)Actor Critic

莫烦强化学习笔记整理(八)Actor Critic


链接: Actor Critic代码.

1、Actor Critic 要点

总结

Actor Critic 是一种结合了 Policy Gradient (Actor) 和 Function Approximation (Critic) 的方法。

Actor 基于概率选行为, Critic 基于 Actor 的行为评判行为的得分, Actor 根据 Critic 的评分修改选行为的概率。

优势

可以进行单步更新, 比传统的 Policy Gradient 要快。

劣势

难收敛。为了解决收敛问题, Google Deepmind 提出了 Actor Critic 升级版 Deep Deterministic Policy Gradient(DDPG) 后者融合了 DQN 的优势, 解决了收敛难的问题。

2、Actor Critic 算法

Actor

在这里插入图片描述

class Actor(object):
    def __init__(self, sess, n_features, n_actions, lr=0.001):
        # 用 tensorflow 建立 Actor 神经网络,
        # 搭建好训练的 Graph.

    def learn(self, s, a, td):
        # s, a 用于产生 Gradient ascent 的方向,
        # td 来自 Critic, 用于告诉 Actor 这方向对不对.

    def choose_action(self, s):
        # 根据 s 选 行为 a
with tf.variable_scope('exp_v'):
    log_prob = tf.log
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值