推荐系统读书笔记一--基于用户行为的推荐

基于用户历史行为分析的推荐算法是个性化推荐系统的重要算法,学术界将这种推荐算法称为“协同过滤算法”。顾名思义,协同过滤就是指用户可以齐心协力,通过和网站不断的互动,使自己的推荐列表不断过滤掉自己不喜欢的东西,从而越来越满足自己的需求。


2.1 用户行为数据简介

用户行为可以分为两种:显性反馈行为和隐形反馈行为。
1)显性反馈行为:指用户明确表示喜好的行为,例如评价、打分等。
2)隐形反馈行为:指那些不能明确反应用户喜好的行为,例如浏览网页、观看视频、听音乐等。

根据用户行为数据反馈的方向,可以把用户行为数据分为正反馈和负反馈。
正反馈:指用户倾向于喜好物品的行为。
负反馈:指用户倾向于不喜好物品的行为。

用户行为数据的统一表示:
user-id             产生行为的用户的唯一标识
item-id             产生行为的对象的唯一标识
behavior-type       行为种类,比如浏览网页,看视频、购物等
behavior-context 产生行为的上下文,比如时间、地点等
behavior-weight     行为权重,如果是看视频,则权重可以是观看时长,如果是打分,则权重可以是分数
behavior-content    行为内容,如果是评价,则内容是评价的内容,如果是打标签,则内容就是标签

我们在很多时候,并不使用统一的形式来表示行为数据,而是根据具体的用户行为来定义特定的数据形式。
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值