注:
1. 数据集来源 MovieLens
2. 源代码在末尾附上
一、Introduction
大家无论是在实体商店还是在网络上,都会有Top-N推荐的情况。基于客户或者基于商品做出推荐。本实验基于Movielens、Ratings的电影数据集,对用户做出Top-N 推荐。主要目的是基于User-Based的思想来进行Top-10的相关电影推荐。
二、Methodology
本实验基于User-Based 的思路,首先通过Item-based计算电影的相似度,对每部电影都生成一个它与其他电影的相似度的序列(按顺序排列),然后从中得到Top-10的电影来作为该部电影的相关推荐电影集。然后根据用户历史行为从Item-base中选出对应的电影序列,从而产生推荐的电影。
MovieLens中的数据格式如下:
1::Toy Story (1995)::Animation|Children's|Comedy
1:表示电影ID; Toy Story(1995)表示电影名 ;Animation|Children’s|Comedy :表示标签
因此可以用一个向量表来表示该电影的信息:
附注: 0 表示电影没有该标签 , 1 表示电影有该标签
对每一