Top-N Recommendation——基于用户的推荐实验

该实验介绍了如何基于MovieLens数据集,利用User-Based方法进行电影推荐。通过计算电影间的相似度,为每个用户生成Top-10推荐列表。实验采用Cosine相似度作为相似度衡量标准,但由于数据限制,未使用TF-IDF计算标签权重。最终,通过相似命中率评估推荐的精确度,发现命中率较低,主要原因是数据量不足和评估集的局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

注:
1. 数据集来源 MovieLens
2. 源代码在末尾附上

一、Introduction


大家无论是在实体商店还是在网络上,都会有Top-N推荐的情况。基于客户或者基于商品做出推荐。本实验基于Movielens、Ratings的电影数据集,对用户做出Top-N 推荐。主要目的是基于User-Based的思想来进行Top-10的相关电影推荐。


二、Methodology


本实验基于User-Based 的思路,首先通过Item-based计算电影的相似度,对每部电影都生成一个它与其他电影的相似度的序列(按顺序排列),然后从中得到Top-10的电影来作为该部电影的相关推荐电影集。然后根据用户历史行为从Item-base中选出对应的电影序列,从而产生推荐的电影。
MovieLens中的数据格式如下:

  1::Toy Story (1995)::Animation|Children's|Comedy

1:表示电影ID; Toy Story(1995)表示电影名 ;Animation|Children’s|Comedy :表示标签
因此可以用一个向量表来表示该电影的信息:
这里写图片描述
附注: 0 表示电影没有该标签 , 1 表示电影有该标签

对每一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值