Ubuntu系统下部署大语言模型:Ollama和OpenWebUI实现各大模型的人工智能自由

之前在window下安装过 Ollama和OpenWebUI搭建本地的人工智能web项目(可以看我之前写的文章),无奈电脑硬件配置太低,用qwen32b就很卡,卡出PPT了,于是又找了一台机器安装linux系统,在linux系统下测试一下速度能否可以快一些。

系统硬件介绍

Ubuntu 22.04.4 LTS

CPU: i5-10400F

内存:32G

硬盘: 512G SSD

显卡: NVIDIA GeForce GTX 1060 6GB

内网IP: 192.168.1.21

ubuntu-Ollama-OpenWebUI

下载 Ollama

访问下载: https://ollama.com/

image-20240517160214023

安装Ollama

方法1、命令行下载安装(耗时长)

安装命令:

$ sudo apt  install curl

$ curl -fsSL https://ollama.com/install.sh | sh

image-20240517160657340

缺点: 国内网络环境要等很久

方法2 , 手动下载安装

1、手动下载 https://ollama.com/install.sh 这个文件

$ sudo mkdir ollama
cd ollama
$ sudo wget https://ollama.com/install.sh

2、注释掉下载部分 curl xxxx 手动下载ollama-linux-{ARCH}

$ sudo vim install.sh

修改文件:
status "Downloading ollama..."
#curl --fail --show-error --location --progress-bar -o $TEMP_DIR/ollama "https://ollama.com/download/ollama-linux-${ARCH}${VER_PARAM}"

我电脑intel/amd cpu 所以 {ARCH} = amd64
浏览器下载 https://ollama.com/download/ollama-linux-amd64 当然科学上网速度更快哟。 放在 install.sh 同目录下

3、注释掉 #$SUDO install -o0 -g0 -m755 $TEMP_DIR/ollama $BINDIR/ollama

改为下面一行:

$ sudo vim install.sh

修改文件:
status "Installing ollama to $BINDIR..."
$SUDO install -o0 -g0 -m755 -d $BINDIR
#$SUDO install -o0 -g0 -m755 $TEMP_DIR/ollama $BINDIR/ollama
$SUDO install -o0 -g0 -m755 ./ollama-linux-amd64  $BINDIR/ollama

4 运行 install.sh ,安装

sh  ./install.sh

image-20240517171750382

image-20240517171944028

重启电脑

配置模型下载路径

cd 
sudo vim .bashrc
### 如何在 Ubuntu 上通过 Ollama 部署 Deep Seek 大型语言模型 要在 Ubuntu 系统上成功部署 DeepSeek 大型语言模型并使用 Ollama 工具,以下是详细的说明: #### 1. 安装必要的依赖项 如果遇到 `-bash: curl: command not found` 或者 `-bash: sudo: command not found` 的错误,则表明系统缺少 `curl` /或 `sudo` 命令工具。可以通过以下命令安装这些必要组件。 对于缺失的 `curl`: ```bash apt update && apt install -y curl ``` 对于缺失的 `sudo`(仅当用户有权限执行管理员操作时适用): ```bash apt update && apt install -y sudo ``` 上述命令会更新包索引并将所需软件安装到系统中[^1]。 #### 2. 安装 Ollama 下载并安装 Ollama 是继续配置的关键步骤之一。可以按照官方文档中的方法完成此过程。具体来说,运行以下命令来获取最新版本的 Ollama 并将其设置为可执行文件: ```bash curl https://ollama.ai/install.sh | sh ``` 这一步骤完成后,还需要验证 Ollama 是否正常工作以及服务是否启动。如果没有自动启动,手动启动它: ```bash ollama service start ``` 如果有提示类似于 “Error: could not connect to ollama app, is it running?” 这样的消息,请确认服务已正确初始化或者尝试重新加载守护进程。 #### 3. 下载 DeepSeek 模型 一旦 Ollama 成功安装完毕之后,下一步就是拉取所需的 DeepSeek 模型。例如要下载 DeepSeek R1 版本的大规模语言模型,只需输入如下指令即可实现自动化下载与缓存管理功能: ```bash ollama pull deepseek/r1 ``` 等待一段时间直到整个流程结束;期间可能会显示进度条以及其他相关信息以便跟踪状态变化情况[^2]。 #### 4. 使用模型进行交互测试 最后,在确保一切准备就绪的前提下,就可以利用该平台所提供的 API 接口或者其他图形界面来进行实际应用层面的操作体验啦!比如简单的查询请求演示例子如下所示: ```bash echo "你好世界!" | ollama run --model=deepseek/r1 - ``` 以上即完成了基于 Linux 发行版(Ubuntu)环境下借助第三方开源项目(Ollama),针对特定预训练大型神经网络架构(DeepSeek LLMs)的一整套端到端解决方案概述描述。 ---
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

星哥玩云

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值