DQN (Deep Q Network)
Abstract
DQN is a pioneering work of deep reinforcement learning in the real sense. DQN is based on Q-Learning and uses a deep network that is good at fitting.
Experience Replay
In Q-learning, we only use the current reward to update the Q Table and then discard it, which is not a good method for reinforcement learning. For human beings, we will also use experience (past rewards) to help us deal with problems, so past experience is also very important for reinforcement learning.
class ReplayMemory(object):
def __init__(self, capacity):
self.memory = deque([],maxlen=capacity)
def push(self, *args):
"""Save a transition"""
self.memory.append(Transition(*args))
def sample(self, batch_size):
return random.sample(self.memory, batch_size)
def __len__(self):
return len(self.memory)
Fixed Q Target
In general, the Q Target depends on Q*(s, a) and changes in each iteration. The changing Q Target is too difficult to follow, so we can fix the Q Target and update it every few iterations.
# Update the target network, copying all weights and biases in DQN
if i_episode % TARGET_UPDATE == 0: # TARGET_UPDATE = 10
target_net.load_state_dict(policy_net.state_dict())
Network
class DQN(nn.Module):
def __init__(self, inputs, outputs):
super(DQN, self).__init__()
self.linear1 = nn.Linear(inputs, 256)
self.bn1 = nn.BatchNorm1d(256)
self.linear2 = nn.Linear(256, 128)
self.bn2 = nn.BatchNorm1d(128)
self.linear3 = nn.Linear(128, outputs)
def forward(self, x):
x = x.to(device)
x = F.relu(self.bn1(self.linear1(x)))
x = F.relu(self.bn2(self.linear2(x)))
return self.linear3(x)
Optimize
def optimize_model():
if len(memory) < BATCH_SIZE:
return
transitions = memory.sample(BATCH_SIZE)
# Transpose the batch (see https://stackoverflow.com/a/19343/3343043 for
# detailed explanation). This converts batch-array of Transitions
# to Transition of batch-arrays.
batch = Transition(*zip(*transitions))
# Compute a mask of non-final states and concatenate the batch elements
# (a final state would've been the one after which simulation ended)
non_final_mask = torch.tensor(tuple(map(lambda s: s is not None,
batch.next_state)), device=device, dtype=torch.bool)
non_final_next_states = torch.cat([s for s in batch.next_state
if s is not None])
state_batch = torch.cat(batch.state)
action_batch = torch.cat(batch.action)
reward_batch = torch.cat(batch.reward)
# Compute Q(s_t, a) - the model computes Q(s_t), then we select the
# columns of actions taken. These are the actions which would've been taken
# for each batch state according to policy_net
state_action_values = policy_net(state_batch).gather(1, action_batch)
# Compute V(s_{t+1}) for all next states.
# Expected values of actions for non_final_next_states are computed based
# on the "older" target_net; selecting their best reward with max(1)[0].
# This is merged based on the mask, such that we'll have either the expected
# state value or 0 in case the state was final.
next_state_values = torch.zeros(BATCH_SIZE, device=device)
next_state_values[non_final_mask] = target_net(non_final_next_states).max(1)[0].detach()
# Compute the expected Q values
expected_state_action_values = (next_state_values * GAMMA) + reward_batch
# Compute Huber loss
criterion = nn.SmoothL1Loss()
loss = criterion(state_action_values, expected_state_action_values.unsqueeze(1))
# Optimize the model
optimizer.zero_grad()
loss.backward()
for param in policy_net.parameters():
param.grad.data.clamp_(-1, 1)
optimizer.step()
Train
max_t = 10000
num_episodes = 3000
for i_episode in range(num_episodes):
# Initialize the environment and state
observation = env.reset()
state = torch.from_numpy(observation).to(torch.float32).unsqueeze(0)
for t in count():
env.render()
# Select and perform an action
policy_net.eval()
action = select_action(state)
policy_net.train()
observation, reward, done, _ = env.step(action.item())
reward = torch.tensor([reward], device=device)
# Observe new state
if not done:
next_state = torch.from_numpy(observation).to(torch.float32).unsqueeze(0)
else:
next_state = None
# Store the transition in memory
memory.push(state, action, next_state, reward)
# Move to the next state
state = next_state
# Perform one step of the optimization (on the policy network)
optimize_model()
if t > max_t:
torch.save(policy_net.state_dict(), "model.pkl")
max_t = t
if done:
episode_durations.append(t + 1)
plot_durations()
break
# Update the target network, copying all weights and biases in DQN
if i_episode % TARGET_UPDATE == 0:
target_net.load_state_dict(policy_net.state_dict())
All of Code
import gym
import math
import random
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from collections import namedtuple, deque
from itertools import count
from PIL import Image
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchvision.transforms as T
# set up matplotlib
is_ipython = 'inline' in matplotlib.get_backend()
if is_ipython:
from IPython import display
env = gym.make('CartPole-v0').unwrapped
plt.ion()
# if gpu is to be used
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
Transition = namedtuple('Transition', ('state', 'action', 'next_state', 'reward'))
class ReplayMemory(object):
def __init__(self, capacity):
self.memory = deque([],maxlen=capacity)
def push(self, *args):
"""Save a transition"""
self.memory.append(Transition(*args))
def sample(self, batch_size):
return random.sample(self.memory, batch_size)
def __len__(self):
return len(self.memory)
class DQN(nn.Module):
def __init__(self, inputs, outputs):
super(DQN, self).__init__()
self.linear1 = nn.Linear(inputs, 256)
self.bn1 = nn.BatchNorm1d(256)
self.linear2 = nn.Linear(256, 128)
self.bn2 = nn.BatchNorm1d(128)
self.linear3 = nn.Linear(128, outputs)
def forward(self, x):
x = x.to(device)
x = F.relu(self.bn1(self.linear1(x)))
x = F.relu(self.bn2(self.linear2(x)))
return self.linear3(x)
env.reset()
BATCH_SIZE = 128
GAMMA = 0.999
EPS_START = 0.9
EPS_END = 0.05
EPS_DECAY = 200
TARGET_UPDATE = 10
# Get number of actions from gym action space
n_actions = env.action_space.n
n_observation = env.observation_space.shape[0]
policy_net = DQN(n_observation, n_actions).to(device)
target_net = DQN(n_observation, n_actions).to(device)
policy_net.load_state_dict(torch.load("model.pkl"))
target_net.load_state_dict(policy_net.state_dict())
target_net.eval()
optimizer = optim.RMSprop(policy_net.parameters())
memory = ReplayMemory(10000)
steps_done = 0
def select_action(state):
global steps_done
sample = random.random()
eps_threshold = EPS_END + (EPS_START - EPS_END) * \
math.exp(-1. * steps_done / EPS_DECAY)
steps_done += 1
if sample > eps_threshold:
with torch.no_grad():
# t.max(1) will return largest column value of each row.
# second column on max result is index of where max element was
# found, so we pick action with the larger expected reward.
return policy_net(state).max(1)[1].view(1, 1)
else:
return torch.tensor([[random.randrange(n_actions)]], device=device, dtype=torch.long)
episode_durations = []
def plot_durations():
plt.figure(2)
plt.clf()
durations_t = torch.tensor(episode_durations, dtype=torch.float)
plt.title('Training...')
plt.xlabel('Episode')
plt.ylabel('Duration')
plt.plot(durations_t.numpy())
# Take 100 episode averages and plot them too
if len(durations_t) >= 100:
means = durations_t.unfold(0, 100, 1).mean(1).view(-1)
means = torch.cat((torch.zeros(99), means))
plt.plot(means.numpy())
plt.pause(0.001) # pause a bit so that plots are updated
if is_ipython:
display.clear_output(wait=True)
display.display(plt.gcf())
def optimize_model():
if len(memory) < BATCH_SIZE:
return
transitions = memory.sample(BATCH_SIZE)
# Transpose the batch (see https://stackoverflow.com/a/19343/3343043 for
# detailed explanation). This converts batch-array of Transitions
# to Transition of batch-arrays.
batch = Transition(*zip(*transitions))
# Compute a mask of non-final states and concatenate the batch elements
# (a final state would've been the one after which simulation ended)
non_final_mask = torch.tensor(tuple(map(lambda s: s is not None,
batch.next_state)), device=device, dtype=torch.bool)
non_final_next_states = torch.cat([s for s in batch.next_state
if s is not None])
state_batch = torch.cat(batch.state)
action_batch = torch.cat(batch.action)
reward_batch = torch.cat(batch.reward)
# Compute Q(s_t, a) - the model computes Q(s_t), then we select the
# columns of actions taken. These are the actions which would've been taken
# for each batch state according to policy_net
state_action_values = policy_net(state_batch).gather(1, action_batch)
# Compute V(s_{t+1}) for all next states.
# Expected values of actions for non_final_next_states are computed based
# on the "older" target_net; selecting their best reward with max(1)[0].
# This is merged based on the mask, such that we'll have either the expected
# state value or 0 in case the state was final.
next_state_values = torch.zeros(BATCH_SIZE, device=device)
next_state_values[non_final_mask] = target_net(non_final_next_states).max(1)[0].detach()
# Compute the expected Q values
expected_state_action_values = (next_state_values * GAMMA) + reward_batch
# Compute Huber loss
criterion = nn.SmoothL1Loss()
loss = criterion(state_action_values, expected_state_action_values.unsqueeze(1))
# Optimize the model
optimizer.zero_grad()
loss.backward()
for param in policy_net.parameters():
param.grad.data.clamp_(-1, 1)
optimizer.step()
max_t = 10000
num_episodes = 3000
for i_episode in range(num_episodes):
# Initialize the environment and state
observation = env.reset()
state = torch.from_numpy(observation).to(torch.float32).unsqueeze(0)
for t in count():
env.render()
# Select and perform an action
policy_net.eval()
action = select_action(state)
policy_net.train()
observation, reward, done, _ = env.step(action.item())
reward = torch.tensor([reward], device=device)
# Observe new state
if not done:
next_state = torch.from_numpy(observation).to(torch.float32).unsqueeze(0)
else:
next_state = None
# Store the transition in memory
memory.push(state, action, next_state, reward)
# Move to the next state
state = next_state
# Perform one step of the optimization (on the policy network)
optimize_model()
if t > max_t:
torch.save(policy_net.state_dict(), "model.pkl")
max_t = t
if done:
episode_durations.append(t + 1)
plot_durations()
break
# Update the target network, copying all weights and biases in DQN
if i_episode % TARGET_UPDATE == 0:
target_net.load_state_dict(policy_net.state_dict())
print('Complete')
env.render()
env.close()
plt.ioff()
plt.show()
Later Work
- add some noise (to simulate real world)
- make balance system more stable
- stop the cart at the target position
Reference
https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html
https://github.com/pytorch/tutorials/blob/master/intermediate_source/reinforcement_q_learning.py
https://github.com/openai/gym/wiki/CartPole-v0
https://www.bilibili.com/video/BV1yv411i7xd?p=10
https://blog.csdn.net/nefetaria/article/details/111238515
https://blog.csdn.net/qian1996/article/details/81265974
https://zhuanlan.zhihu.com/p/74926425
Author (of this markdown)
SaleJuice