POJ 1845

题目链接: POJ1845
题目大意: 给出 A , B A,B A,B,求 A B A^{B} AB中所有因数的和。
题目分析: 对于一个数 A A A我们可以把它写成 A = p 1 k 1 ∗ p 2 k 2 ∗ . . . ∗ p m k m A=p1^{k1}*p2^{k2}*...*pm^{km} A=p1k1p2k2...pmkm
那么对于 A B A^{B} AB就可以写成 A B = p 1 B k 1 ∗ p 2 B k 2 ∗ . . . ∗ p m B k m A^{B}=p1^{Bk1}*p2^{Bk2}*...*pm^{Bkm} AB=p1Bk1p2Bk2...pmBkm
而对于一个数,它的因数和可以写成
∑ n ∣ d = ( 1 + p 1 + p 1 2 + . . . + p 1 k 1 ) ( 1 + p 2 + p 2 2 + . . . + p 2 k 2 ) . . . ( 1 + p m + p m 2 + . . . + p m k m ) \sum_{n|d}=(1+p1+p1^2+...+p1^{k1}) (1+p2+p2^2+...+p2^{k2})...(1+pm+pm^2+...+pm^{km}) nd=(1+p1+p12+...+p1k1)(1+p2+p22+...+p2k2)...(1+pm+pm2+...+pmkm)

对于一个括号内的多项式,可以看做是等比数列的前缀和的形式,但由于题目要对答案取模,而模运算中的除法不满足分配律,因此这里递归求解
分类讨论,当 k k k为奇数时 f ( p , k ) = ( 1 + p + . . . + p k − 1 2 ) + ( p k + 1 2 + . . . + p k ) f(p,k)=(1+p+...+p^{\frac{k-1}{2}})+(p^{\frac{k+1}{2}}+...+p^{k}) f(p,k)=(1+p+...+p2k1)+(p2k+1+...+pk) f ( p , k ) = ( 1 + p k + 1 2 ) ( 1 + p + . . . + p k − 1 2 ) f(p,k)=(1+p^{\frac{k+1}{2}})(1+p+...+p^{\frac{k-1}{2}}) f(p,k)=(1+p2k+1)(1+p+...+p2k1) f ( p , k ) = ( 1 + p k + 1 2 ) f ( p , k − 1 2 ) f(p,k)=(1+p^{\frac{k+1}{2}})f(p,\frac{k-1}{2}) f(p,k)=(1+p2k+1)f(p,2k1)同理当 k k k为偶数时 f ( p , k ) = ( 1 + p + . . . + p k 2 − 1 ) + ( p k 2 + . . . + p k − 1 ) + p k f(p,k)=(1+p+...+p^{\frac{k}{2}-1})+(p^{\frac{k}{2}}+...+p^{k-1})+p^{k} f(p,k)=(1+p+...+p2k1)+(p2k+...+pk1)+pk f ( p , k ) = ( 1 + p k 2 − 1 ) ( 1 + p + . . . + p k 2 ) + p k f(p,k)=(1+p^{\frac{k}{2}-1})(1+p+...+p^{\frac{k}{2}})+p^k f(p,k)=(1+p2k1)(1+p+...+p2k)+pk f ( p , k ) = ( 1 , p k 2 − 1 ) f ( p , k 2 ) + p k f(p,k)=(1,p^{\frac{k}{2}-1})f(p,\frac{k}{2})+p^k f(p,k)=(1,p2k1)f(p,2k)+pk
这样复杂度大约是 O ( m ( 约 数 个 数 ) l o g ( m ) ) O(m(约数个数)log(m)) O(m()log(m))
下面是完整代码。
题目代码:

#include<stdio.h>
#define LL long long
#define mod 9901
int prime[1100000],not_prime[1100000],cnt,Cnt;
LL ans=1;
struct Divisor{
	LL p,k;
}divisor[1100000];
LL ksm(LL a,LL b){
	if(b==0)return 1;
	LL v=ksm(a,b/2);
	if(b%2)return v*v%mod*a%mod;
	else return v*v%mod;
}
LL Work(LL p,LL k){
	if(k==0)return 1;
	if(k%2)return Work(p,k/2)*(1+ksm(p,k/2+1))%mod;
	if(!(k%2))return (Work(p,k/2-1)*(1+ksm(p,k/2))%mod+ksm(p,k))%mod;
}
bool Check(LL a){
	for(int i=2;i*i<=a;i++)
		if(a%i==0)return false;
	return true;
}
int main()
{
	LL n,m;
	scanf("%lld %lld",&n,&m);
	if(n==0&&m==0){
		printf("1\n");
		return 0;
	}
	for(int i=2;i<=1000000;i++){
		if(!not_prime[i]){
			int cc=i;
			while(cc+i<=1000000){
				cc+=i;
				not_prime[cc]=1;
			}
			prime[++cnt]=i;
		}
	}
	for(int i=1;i<=cnt;i++){
		if(n%prime[i])continue;
		int c=0;
		while(!(n%prime[i]))n/=prime[i],c++;
		divisor[++Cnt].p=prime[i];
		divisor[Cnt].k=c;
	}
	if(Check(n)&&n>1000000){
		divisor[++Cnt].p=n;
		divisor[Cnt].k=1;
	}
	for(int i=1;i<=Cnt;i++)
		ans=(ans*Work(divisor[i].p,divisor[i].k*m)%mod)%mod;
	printf("%lld\n",ans);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值