Notes for Mathematical Logic

Chapter 1 绪

自然语言 歧义 不适合演绎(deduction)
形式化公理系统
形式语言(Formal Languages,或符号(symbolic)语言)
程序设计语言、分子式、乐谱都是形式语言
语法(Syntax,或语构)
语义(Semantic)


Chapter 2 命题逻辑

命题逻辑(Propositional Logic)VS 谓词逻辑(Predicate Logic)

命题逻辑:推理中只分析命题之间的关系,不需要把命题分解为构成命题的各种非命题成分


2.1 命题与联结词

Def. 命题1

  • 原始概念(基本概念),无法给出精确定义,但可描述其性质
  • 具有真假意义的判断性或陈述性的语句称为 命题(proposition),或称语句(statement)

Def. 原子命题
atom 又称 简单命题 不能进一步被分解
e.g. 雪是白的

Def. 复合命题
由联结词(Connective)和简单命题构成
Def. 命题变元
变元:非特指
vs. 命题常元

Def. 联结词

  • 否定(Negation)词: ¬ \neg ¬ 读作“非”
  • 合取(Conjunction)词: ∧ \land 读作“与”(本人喜欢读成“合取”)
  • 析取(Disjunction)词: ∨ \lor 读作“或”(本人喜欢读成“析取”)
  • 蕴含词(Implication,或条件(Conditional)): → \rightarrow 读作“蕴含”(本人喜欢读成“推”)
  • 双条件词(Biconditional,或等价(Equivalence)): ↔ \leftrightarrow 读作“等价”

优先级从高到低: ¬ \neg ¬,( ∧ \land , ∨ \lor ), → \rightarrow , ↔ \leftrightarrow
可以加括号

Def. 真值表(Truth table)
Recursive Def. 命题公式

  1. 原子命题是命题公式
  2. A A A, B B B是命题公式,则 ¬ A \neg A ¬A, A ∧ B A\land B AB, A ∨ B A\lor B AB, A → B A\rightarrow B AB, A ↔ B A\leftrightarrow B AB均为命题形式
    要求复合有限次

若公式 A A A中含有原子变元符 p 1 , p 2 , . . . , p n p_1,p_2,...,p_n p1,p2,...,pn,那么公式 A A A可记为 A ( p 1 , p 2 , . . . , p n ) A(p_1,p_2,...,p_n) A(p1,p2,...,pn)

Def. (真值)指派(Assignment)
常用符号 α \alpha α表示
作用于公式,e.g. α ( A ) = T \alpha(A)=T α(A)=T, α ( B ) = F \alpha(B)=F α(B)=F
若公式 A A A n n n个变元,那么共有 2 n 2^n 2n个不同的指派
Def. 重言式(Tautology, 或永真式):公式 A A A对任一真值指派其真值均为T
Def. 永假式(Inconsistent,或矛盾式(Contradiction)):…均为F
Def. 可满足式 2:公式 A A A存在一个指派使其真值为T

Def. 逻辑蕴涵

A → B A\rightarrow B AB是重言式,则称 A A A逻辑蕴涵 B B B,或称 B B B A A A的逻辑推论,记为 A ⇒ B A\Rightarrow B AB

Def. 公式集
Γ = { A 1 , A 2 , . . . , A n } \Gamma=\{A_1,A_2,...,A_n\} Γ={A1,A2,...,An}
∧ i = 1 n A i → B \land_{i=1}^nA_i\rightarrow B i=1nAiB是重言式,则 Γ ⇒ B \Gamma\Rightarrow B ΓB

Def. 逻辑等价
A ↔ B A\leftrightarrow B AB是重言式,则称 A A A B B B逻辑等价(重言等价、等值),记为 A ⇔ B A\Leftrightarrow B AB

Thm. 代入原理
A A A为含命题变元 p p p的重言式,则将 A A A p p p的所有出现均替换为命题公式 B B B,所得仍为重言式
Thm. 替换原理
C C C为命题公式 A A A中的子命题公式, C ⇔ D C\Leftrightarrow D CD,则将任意数量的 C C C D D D替换,所得命题公式 B ⇔ A B\Leftrightarrow A BA


2.2 范式

Def. 文字
原子命题公式及其否定
Def. 合取式、析取式
文字的合取、析取
Def. 合取范式
n ( n ≥ 1 ) n(n\geq 1) n(n1)个析取式的合取,形如 ∧ i = 1 n A i \land_{i=1}^nA_i i=1nAi,其中 A i A_i Ai为析取式
Def. 析取范式
n ( n ≥ 1 ) n(n\geq 1) n(n1)个合取式的析取,形如 ∨ i = 1 n A i \lor_{i=1}^n A_i i=1nAi,其中 A i A_i Ai为合取式

Thm. 范式定理
任一命题公式 A A A都存在与之等价的合取范式和析取范式
求解过程如下:

  1. 用逻辑等价式
    A → B ⇔ ¬ A ∨ B A \rightarrow B \Leftrightarrow \neg A \lor B AB¬AB
    A ↔ B ⇔ ( ¬ A ∨ B ) ∧ ( A ∨ ¬ B ) ⇔ ( A ∧ B ) ∨ ( ¬ A ∧ ¬ B ) A \leftrightarrow B \Leftrightarrow (\neg A \lor B) \land (A \lor \neg B) \Leftrightarrow (A \land B) \lor (\neg A \land \neg B) AB(¬AB)(A¬B)(AB)(¬A¬B)
    消去 → \rightarrow ↔ \leftrightarrow
  2. 运用Morgan Law,分配律及双重否定律对公式形式转换
  3. 化简

Def. 合取项
合取范式中的项 A i A_i Ai(析取式)
Def. 析取项
析取范式中的项 A i A_i Ai(合取式)
Def. 主合取范式
设命题公式 A ( p 1 , p 2 , . . . , p n ) A(p_1,p_2,...,p_n) A(p1,p2,...,pn)的合取范式为 ∧ j = 1 k A j ( k ≥ 1 ) \land_{j=1}^k A_j (k\geq 1) j=1kAj(k1)
若其中每一个合取项 A j A_j Aj的形式都为 A j = ∨ i = 1 n Q i A_j=\lor_{i=1}^n Q_i Aj=i=1nQi Q i = p i Q_i=p_i Qi=pi ¬ p i \neg p_i ¬pi,则称该合取范式 ∧ j = 1 k A j ( k ≥ 1 ) \land_{j=1}^k A_j (k\geq 1) j=1kAj(k1) A A A合取范式
Def. 极大项
称形如 A j = ∨ i = 1 n Q i A_j=\lor_{i=1}^n Q_i Aj=i=1nQi的合取项为极大项,常用 M j M_j Mj表示

极大项 M j M_j Mj的性质:

  1. 对于命题公式 A ( p 1 , p 2 , . . . , p n ) A(p_1,p_2,...,p_n) A(p1,p2,...,pn),共有 2 n 2^n 2n个极大项( Q i = p i   o r   ¬ p i Q_i=p_i\ or\ \neg p_i Qi=pi or ¬pi
  2. 每个极大项 M j M_j Mj 2 n 2^n 2n种真值指派( Q i = T   o r   F Q_i=T\ or\ F Qi=T or F),为 F F F的指派唯一
  3. 任意两个不相同的极大项的真值取值不能同为 F F F
  4. ∧ j = 1 2 n M j ⇔ F \land_{j=1}^{2^n}M_j \Leftrightarrow F j=12nMjF

Def. 极小项
analogy
极小项 m j m_j mj的性质:
analogy


2.3 联结词的扩充和规约

联结词完备集

2.4 推理及其有效性

Def. 推理
推理是从一些判断推出另一个判断的思维过程,推出的判断称为结论(conclusion),用于推出结论的那些判断称为前提(premise)
演绎推理vs归纳推理
Mathematics is deductive.
Def. 推理形式
推理形式是命题形式的一个有限序列,最后一个命题形式是结论,其它的命题形式为前提
针对其可定义有效/无效

有效推理形式:

  1. 分离规则或三段论(Modus Ponens, MP)
    若 A , A → B,则 B
  2. 逆分离规则
  3. 反证法或归谬法(Reductio ad Absurdum)

Chapter 3 命题演算形式系统

3.1 命题逻辑演算形式系统

命题逻辑形式系统,简称PC(Propositional calculus)

3.1.1 PC的组成

  1. 字符集 Σ = { ( , ) , ¬ , → , p 1 , p 2 , . . . , p n , . . . } \Sigma=\{(, ), \neg, \rightarrow, p_1,p_2,...,p_n,...\} Σ={(,),¬,,p1,p2,...,pn,...}
    a.原子变元符: p 1 , p 2 , . . . , p n , . . . p_1,p_2,...,p_n,... p1,p2,...,pn,... b.联结词完备集: { ¬ , → } \{\neg, \rightarrow\} {¬,} c. 辅助括号:圆括号 ( ) () ()
  2. 形成规则
  3. 公理
    A1 : A → ( B → A ) A\rightarrow (B\rightarrow A) A(BA)
    A2 : ( A → ( B → C ) ) → ( ( A → B ) → ( A → C ) ) (A\rightarrow (B \rightarrow C)) \rightarrow ((A\rightarrow B)\rightarrow (A\rightarrow C)) (A(BC))((AB)(AC))
    A3 : ( ¬ B → ¬ A ) → ( A → B ) (\neg B \rightarrow \neg A)\rightarrow (A \rightarrow B) (¬B¬A)(AB)
    公理模式,A1, A2, A3 都代表无穷多条公理
  4. 推理规则
    仅一条,即分离规则 r m p r_{mp} rmp):若 A A A A → B A\rightarrow B AB,则 B B B
  5. 定理推导

3.1.2 PC的基本定理

Def. 证明
Def. 定理
符号 ⊢ P C A \vdash_{PC} A PCA ,简记成 ⊢ A \vdash A A
Def. 演绎
“有前提的证明”
Γ ⊢ A \Gamma \vdash A ΓA

以下给出若干PC中的基本定理(定理模式),引号内给出语义上的解释
Thm. 3.1.1
⊢ A → A \vdash A\rightarrow A AA
“肯定自身”

Thm. 3.1.2
⊢ P \vdash P P,则 ⊢ A → P \vdash A\rightarrow P AP
“已证定理可加前件”

Thm. 3.1.3
⊢ ¬ A → ( A → B ) \vdash \neg A \rightarrow (A \rightarrow B) ¬A(AB)
“前提不一致可证任意结论”

Thm. 3.1.4
¬ ¬ A ⊢ A \neg \neg A \vdash A ¬¬AA

Thm. 3.1.5
⊢ ( B → C ) → ( ( A → B ) → ( A → C ) ) \vdash (B \rightarrow C)\rightarrow ((A\rightarrow B)\rightarrow (A\rightarrow C)) (BC)((AB)(AC))
“传递规律的变形, Thm 3.1.2 + A2 + r m p r_{mp} rmp

Thm. 3.1.6
⊢ ( A → ( B → C ) ) → ( B → ( A → C ) ) \vdash (A\rightarrow (B\rightarrow C))\rightarrow (B\rightarrow (A\rightarrow C)) (A(BC))(B(AC))
“前件交换”

Thm. 3.1.7
⊢ ( A → B ) → ( ( B → C ) → ( A → C ) ) \vdash (A\rightarrow B)\rightarrow ((B\rightarrow C)\rightarrow (A\rightarrow C)) (AB)((BC)(AC))
“传递规律,Thm 3.1.5 + Thm 3.1.6”


  1. 悖论(Paradox)不是命题
    基于命题及其真值建立的逻辑称命题逻辑(Propositional Logic,PL),
    PL 是二值逻辑,亦称经典(标准)命题逻辑
    二值(1,0)对应于二进制
    三值逻辑除真假值外还有第三个值“不确定”(可表示“即真又假”),属于非经典(标准)逻辑
    e.g.
    命题:1+1=2、1+1=3
    悖论:“言尽悖”、“世上没有绝对的真理”
    既非命题,又非悖论:我明天这个时候说的这句话是假的 ↩︎

  2. 大名鼎鼎的SAT(SATisfiability)问题:是否存在算法能多项式时间内判定一个命题形式是否可满足
    若解决了SAT问题,就解决了P=?NP问题 ↩︎

### 回答1: 数理逻辑是一门研究数学中正确推理的学科。它主要关注如何使用符号和规则来表示、推理和分析数学中的命题和结论。数理逻辑中最重要的工具之一是“命题演算”,它允许我们将命题表示为符号,然后使用规则来证明这些命题的正确性。 数理逻辑是现代数学的基石,广泛应用于计算机科学、人工智能、哲学、语言学和其他领域。数理逻辑不仅仅考虑了数学中的命题和结论,还研究了推理过程本身,例如在什么条件下可以从一个命题推导出另一个命题。 在学习数理逻辑时,需要深入理解符号和规则,并且能够使用它们来表达和证明命题。另外,数理逻辑的学习还需要掌握许多数学概念和方法,因此需要具备足够的数学基础。 总而言之,数理逻辑是一门十分重要的数学学科,它不仅可以帮助我们更好地理解数学,而且还能够应用于很多其他领域。因此,学习数理逻辑是非常有意义的。 ### 回答2: 数学逻辑是一种研究数学概念、数学方法和数学结论的科学。简单来说,数学逻辑是一种将数学和哲学相互连接的学科。它旨在帮助我们理解数学原理背后的基本概念和原则。 数学逻辑被认为是一种严密的推理和证明的学科。它利用符号和公式来解决问题和推理,而不是使用自然语言。通过数学逻辑,我们能够更好地理解和分析数学问题,从而发现数学规律和结论。 数学逻辑可以分为两种类型:一阶逻辑和高阶逻辑。一阶逻辑主要探讨命题、范畴和关系等问题,而高阶逻辑则涉及到更高级的表达式和逻辑。在一阶逻辑中,命题是分析和推理的基本概念。在数学逻辑中,我们使用符号和公式来表示命题,我们使用规则来推理和解决问题。 无论您是数学专业还是非数学专业,数学逻辑都是一种非常有用且重要的学科。在许多学科中都会使用到数学逻辑,例如计算机科学、语言学和哲学等等。如果您感兴趣并想要深入了解数学逻辑,可以尝试阅读一些相关的书籍和文章来提高您的知识水平。 ### 回答3: 作为一门重要的形式科学,数理逻辑研究的是真理与推理、证明与描述、结论与前提之间的关系,以及逻辑语言和逻辑系统的构建和分析。数理逻辑涉及的范围非常广泛,涵盖了数学、哲学、计算机科学、人工智能等多个领域。 数理逻辑的基础是命题逻辑和谓词逻辑。命题逻辑研究的是命题之间的逻辑关系,例如“如果A成立,那么B也成立”;谓词逻辑则涉及个体和谓词之间的关系,例如“所有X都满足Y条件”。这两种逻辑都可以用公式表示,并进行推导和证明。 数理逻辑在现代科学中发挥着重要的作用。它不仅为数学提供了基础,还在计算机科学和人工智能领域中应用广泛,例如自然语言处理、智能搜索、机器学习等。同时,数理逻辑也是哲学思考和探究知识的重要工具之一。 学习数理逻辑可以提高思维能力和逻辑思维能力,帮助人们更好地理解和分析问题,而且它亦为学者们在其工作中提供了一个基本框架。无论是从事学术研究的领域,还是在商业、管理、心理的方面,学习数理逻辑都可以为个人职业生涯发展提供基础和帮助。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值