【JZOJ 4799】 我的快乐时代

Description

这里写图片描述
这里写图片描述

Analysis

我跑得好慢sosad
发现自己基础不扎实,于是。。。
我用的是标准题解法,枚举两个位,枚举分别填的数,再数位DP一下算满足条件的数有多少个
数位DP的细节极多。。。
f[i][j][01]表示第i位,填j,是否贴着上界的数有多少个。

Code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,b,a) for(int i=b;i>=a;i--)
using namespace std;
typedef long long ll;
const ll mo=1e9+7;
int a[20],f[20][10][2];
ll dp(int n,int i1,int j1,int x,int y)
{
    memset(f,0,sizeof(f));
    fo(j,1,9)
    {
        if(i1==n && j!=x || j1==n && j!=y) continue;
        if(n==a[0])
        {
            if(j>a[n]) break;
            if(j==a[n]) f[n][j][0]=1;
            else f[n][j][1]=1;
        }
        else f[n][j][1]=1;
    }
    fd(i,n-1,1)
    {
        if(!(i1==i && x!=a[i] || j1==i && y!=a[i])) (f[i][a[i]][0]+=f[i+1][a[i+1]][0])%=mo;
        fo(j,0,9)
        {
            if(i1==i && j!=x || j1==i && j!=y) continue;
            fo(k,0,9)
            {
                (f[i][j][1]+=f[i+1][k][1])%=mo;
                if(j<a[i] && k==a[i+1]) (f[i][j][1]+=f[i+1][k][0])%=mo;
            }
        }
    }
    ll t=f[1][a[1]][0];
    if(i1==1) t=f[1][x][0];
    fo(j,0,9)
    {
        if(i1==1 && j!=x || j1==1 && j!=y) continue;
        (t+=f[1][j][1])%=mo;
    }
    return t;
}
ll solve()
{
    ll s=0;
    fo(i,1,a[0])
        fo(j,i,a[0])
        {
            int w=i+j-1;
            if(w>a[0]) continue;
            fo(x,1,9)
                fo(y,1,9)
                {
                    if(i==j && x!=y) continue;
                    if(j==a[0] && y>a[a[0]]) break;
                    ll t=x*y*dp(w,i,j,x,y)%mo;
                    if(i==j) s=(s+t)%mo;
                    else s=(s+t*2%mo)%mo;
                }
        }
    return s;
}
int main()
{
    ll x,ans;
    scanf("%lld",&x);x--;
    for(;x;x/=10) a[++a[0]]=x%10;
    ans=solve();
    scanf("%lld",&x);
    a[0]=0;
    for(;x;x/=10) a[++a[0]]=x%10;
    ll t=solve();
    ans=(t-ans+mo)%mo;
    printf("%lld",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值