【BZOJ】1030 [JSOI2007]文本生成器 AC自动机+DP

80 篇文章 1 订阅
6 篇文章 0 订阅

题目传送门

经过这道题的练习,我对AC自动机有了更加深刻的理解:怎么计算AC自动机需要的数组大小。

(话说为什么我以前不会?大概是以前太瓜皮了吧……)

这题的题目大意就是让我们求构成长度为m的文本串,且文本串内至少包含一个模式串的方案总数。

我们可以用集合的思想,把题目转化成构成长度为m的文本串的方案数减去构成长度为m的文本串中不包含任意一个模式串的方案数。

然后考虑AC自动机,我们把每一个模式串插入Trie树中,标记每一个模式串结尾出的叶节点,建立next树。

接着我们考虑DP,定义f[i][j]表示当前文本串长度为i,所在Trie树上的节点为j的构成方案数,于是题目就转化成了求Σf[m][i]且节点i没有被标记过。

对于所有非叶子节点j,我们可以直接把f[i][j]转移到f[i+1][j的儿子],注意:这里的j的儿子是经过指针优化的。

(“指针”这一说法只是我的个人喜好,具体的请看我的博客:【洛谷】3808 【模板】AC自动机(简单版)

至于时间复杂度,是O(size*m*26)的(size表示AC自动机的大小),反正能跑过这一题就行了。

附上AC代码:

#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;

const int p=10007;
struct note{
	int lk[26],ed,nt;
}AC[6000];
int n,m,size,f[105][6000],ans;
char s[105];

inline void insert(char *s){
	int len=strlen(s+1),now=0;
	for (int i=1; i<=len; ++i){
		if (!AC[now].lk[s[i]-'A']) AC[now].lk[s[i]-'A']=++size;
		now=AC[now].lk[s[i]-'A'];
	}
	AC[now].ed=1;
}

inline void build(){
	queue <int> que;
	for (int i=0; i<26; ++i)
		if (AC[0].lk[i]) AC[AC[0].lk[i]].nt=0,que.push(AC[0].lk[i]);
	while (!que.empty()){
		int d=que.front();que.pop();
		for (int i=0; i<26; ++i)
			if (AC[d].lk[i]) AC[AC[d].lk[i]].nt=AC[AC[d].nt].lk[i],que.push(AC[d].lk[i]);
				else AC[d].lk[i]=AC[AC[d].nt].lk[i];
		AC[d].ed|=AC[AC[d].nt].ed;
	}
	return;
}

int main(void){
	scanf("%d%d",&n,&m);
	for (int i=1; i<=n; ++i) scanf("%s",s+1),insert(s);
	AC[0].nt=0,build();
	f[0][0]=1;
	for (int i=1; i<=m; ++i)
		for (int j=0; j<=size; ++j)
			if (!AC[j].ed)
				for (int k=0; k<26; ++k)
					f[i][AC[j].lk[k]]=(f[i][AC[j].lk[k]]+f[i-1][j])%p;
	ans=1;
	for (int i=1; i<=m; ++i) ans=(ans*26)%p;
	for (int i=0; i<=size; ++i) if (!AC[i].ed) ans=(ans-f[m][i]+p)%p;
	printf("%d",ans);
	return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值