离散数学-7 二元关系

定义7.1 由两个元素 x y,按照一定的顺序组成的二元组称为有序对,记作<x,y>.

有序对性质:

(1) 有序性 <x,y><y,x> (当xy时)

(2) <x,y><u,v>相等的充分必要条件是

<x,y>=<u,v> x=uy=v.

定义7.2 A,B为集合,AB笛卡儿积记作AB,且

AB = {<x,y>| xAyB}.

笛卡儿积性质:

(1) 不适合交换律

AB BA (AB, A, B)

(2) 不适合结合律

(AB)C A(BC) (A, B, C)

(3) 对于并或交运算满足分配律

A(BC) = (AB)(AC) (BC)A = (BA)(CA)

A(BC) = (AB)(AC) (BC)A = (BA)(CA)

(4) A B 中有一个为空集,则 AB 就是空集.

A = B = 

(5) |A| = m, |B| = n, |AB| = mn

例题:

AC = BD是否推出 A=B,C=D? 为什么?

不一定.反例如下:

A={1}B={2}, C = D = , AC = BD但是A B.

定义7.3 如果一个集合满足以下条件之一:

(1) 集合非空, 且它的元素都是有序对

(2) 集合是空集

则称该集合为一个二元关系, 简称为关系,记作R.

定义7.4

A,B为集合, A×B的任何子集所定义的二元关系叫做AB的二元关系, A=B时则叫做A上的二元关系.

定义7.5 A 为集合,

(1) A上的关系,称为空关系

(2) 全域关系 EA = {<x,y>| xAyA} = A×A

恒等关系 IA = {<x,x>| xA}

小于等于关系 LA = {<x,y>| x,yAxy}, A为实数子集

整除关系 DB = {<x,y>| x,yBx整除y}, A为非0整数子集

包含关系 R = {<x,y>| x,yAxy}, A是集合族.

关系的表示

1. 关系矩阵

A={x1, x2, …, xm}B={y1, y2, …, yn}R是从AB

关系,R的关系矩阵是布尔矩阵MR = [ rij ] mn, 其中

rij = 1 < xi, yj> R.

2. 关系图

A= {x1, x2, …, xm}R是从A上的关系,R的关系图是GR=<A, R>, 其中A为结点集,R为边集. 如果<xi,xj>属于关系R,在图中就有一条从 xi xj 有向边.

注意:

关系矩阵适合表示从AB的关系或A上的关系(A,B为有穷集)

关系图适合表示有穷集A上的关系

关系的基本运算

定义7.6 关系的定义域值域分别定义为

domR = { x | y (<x,y>R) }

ranR = { y | x (<x,y>R) }

fldR = domR ranR

定义7.7 关系的逆运算

R1 = { <y, x> | <x, y>R }

定义7.8 关系的合成运算

RS = { <x, z> | y (<x, y>R <y, z>S) }

定义7.9 R为二元关系, A是集合

(1) RA上的限制记作 RA, 其中

RA = { <x,y> | xRyxA }

(2) AR下的记作R[A], 其中

R[A]=ran(RA)

说明:

RA上的限制 RAR 的子关系,即 RA R

AR下的像 R[A] ranR 的子集,即 R[A] ranR

R =

R[] =

定理7.1 F是任意的关系,

(1) (F1)1=F

(2) domF1= ranF, ranF1= domF

定理7.2 F, G, H是任意的关系,

(1) (FG)H = F(GH)

(2) (FG)1 = G1F1

定理7.3 RA上的关系,

  RIA= IAR=R

定理7.4

(1) F(GH) = FGFH (2) (GH)F = GFHF

(3) F(GH) FGFH (4) (GH)F GFHF

只证 (3) 任取<x,y>,

 <x,y>F(GH)

t (<x,t>F<t,y>GH)

t (<x,t>F<t,y>G<t,y>H)

t ((<x,t>F<t,y>G)(<x,t>F<t,y>H))

t (<x,t>F<t,y>G)t (<x,t>F<t,y>H)

 <x,y>FG<x,y>FH

<x,y>FGFH

所以有 F(GH) FGFH

定理7.4 的结论可以推广到有限多个关系

R(R1R2∪…∪Rn) = RR1RR2∪…∪RRn

(R1R2∪…∪Rn)R = R1RR2R∪…∪RnR

R(R1R2Rn) RR1RR2RRn

(R1R2Rn)R R1RR2RRnR

定理7.5 F 为关系, A, B为集合,

(1) F (AB) = F AF B

(2) F [AB] = F [A]F [B]

(3) F (AB) = F AF B

(4) F [AB] F [A]F [B]

定义7.10

R A 上的关系, n为自然数, R n 次幂定义为:

(1) R0 = { <x,x> | xA } = IA

(2) Rn+1 = RnR

注意:

对于A上的任何关系 R1 R2 都有 R10 = R20 = IA

对于A上的任何关系 R 都有 R1 = R

如何计算Rn次幂呢(n2)?

1、关系矩阵的布尔乘法

与线性代数中的矩阵乘法公式相比,只要把矩阵乘法公式中的数乘改为合取,把数加改为析取,就得到了关系矩阵的布尔乘法公式。

2、关系图

几次幂就是走几步能不能到。

定理7.6 A n 元集, R A上的关系, 则存在自然数 s t, 使得 Rs = Rt.

R A上的关系,

列出 R 的各次幂

必存在自然数 s t 使得 Rs = Rt

定理7.7 R A上的关系, m, nN, 则 【归纳法】

(1) RmRn = Rm+n

(2) (Rm)n = Rmn

定理7.8 R A上的关系,

若存在自然数 s, t (s<t) 使得 Rs=Rt,

(1) 对任何 kNRs+k = Rt+k

(2) 对任何 k, iNRs+kp+i = Rs+i, 其中 p = ts【归纳法】

(3) S = {R0,R1,…,Rt1}, 则对于任意的 qN RqS

定义7.11 R A上的关系,

(1) x(xA<x,x>R), 则称 R A 上是自反.

(2) x(xA<x,x>R), 则称 R A 上是反自反.

定义7.12 R A上的关系

(1) xy( x,yA<x,y>R<y,x>R), 则称 R A对称的关系.

(2) xy( x,yA<x,y>R<y,x>Rx=y), 则称 R A上的反对称关系.

定义7.13 RA上的关系,

xyz(x,y,zA<x,y>R<y,z>R<x,z>R),则称 R A上的传递关系.

定理7.9 RA上的关系,

(1) R A上自反当且仅当 IA R

(2) R A上反自反当且仅当 RIA =

(3) R A上对称当且仅当 R=R1

(4) R A上反对称当且仅当 RR1 IA

(5) R A上传递当且仅当 RR R

恒等关系IA和空关系既是A上的对称关系也是A上的反对称关系.

定义7.14 R是非空集合A上的关系, R自反(对称传递)闭包A上的关系R, 使得R满足以下条件:

(1) R是自反的(对称的或传递的)

(2) RR

(3) A上任何包含R的自反(对称或传递)关系RRRR的自反闭包记作r(R), 对称闭包记作s(R), 传递闭包记作t(R).

定理7.10 RA上的关系, 则有

(1) r(R)=RR0

(2) s(R)=RR1

(3) t(R)=RR2R3∪…

说明:对有穷集A(|A|=n)上的关系, (3)中的并最多不超过Rn 原因是Rn次幂相当于走了n步,可以联系关系图来思考,在R的关系图中, 从顶点xi到xj且不含回路的路径最多n步长.。

我们希望R有某些有用的性质,并且添加的有序对要尽可能少,这样就构造了闭包。

推论:设R为有穷集A上的关系,则存在正整数r使得: t(R)=RR2R3∪…Rr

以定理为基础,我们可以得到构造闭包的方法:

1)根据定理7.10通过集合运算求得。

2)利用关系矩阵求闭包。

设关系Rr(R)s(R)t(R)的关系矩阵分别是MMrMsMt,定理7.10中的公式转换成矩阵表示:

Mr = M + E

Ms = M + MT

Mt = M + M2 + M3 +…

其中, E:与M同阶的单位矩阵。

MTM的转置。

"+":矩阵中对应元素的逻辑加(按位或)

3)利用关系图求闭包。

设关系Rr(R)s(R)t(R)的关系图分别是GGrGsGt ,则GrGsGt的顶点集与G的顶点集相等。除了G的边以外,依下述方法添加新的边:

Gr:考察G的每个顶点,如果没有环就加上一个环,最终得到的是Gr

Gs:考察G的每一条边,如果有一条xixj的单向边,ij,则在G中加一条xjxi的反方向边.最终得到Gs

Gt:考察G 的每个顶点 xi, xi可达的所有顶点 xj(允许i=j ),如果没有从 xi xj的边, 就加上这条边, 得到图Gt

定理7.11 R是非空集合A上的关系,

(1) R是自反的当且仅当 r(R)=R.

(2) R是对称的当且仅当 s(R)=R.

(3) R是传递的当且仅当 t(R)=R.

定理7.12 R1R2是非空集合A上的关系, R1R2,

(1) r(R1) r(R2)

(2) s(R1) s(R2)

(3) t(R1) t(R2)

定理7.13 R是非空集合A上的关系,

(1) R是自反的, s(R) t(R) 也是自反的

(2) R是对称的, r(R) t(R) 也是对称的

(3) R是传递的, r(R) 是传递的.

说明:如果需要进行多个闭包运算,比如求R的自反、对称、传递的闭包 tsr(R),运算顺序如下:tsr(R) = rts(R) = trs®

定理7.13

1)如果关系R是自反的,那么经过求闭包的运算以后所得到的关系仍旧是自反的。

2)如果关系R是对称的,那么经过求闭包的运算以后所得到的关系仍旧是对称的。

3)但是对于传递的关系则不然,它的自反闭包仍旧保持传递性,而对称闭包就有可能失去传递性。

因此,在计算关系R的自反、对称、传递的闭包时, 为了不失传递性, 传递闭包运算应放在对称闭包运算的后边.

定义7.15 R为非空集合上的关系. 如果R是自反的、对称的和传递的, 则称RA等价关系. R 是一个等价关系, <x,y>R, x等价于y, 记做xy.

定义7.16 R为非空集合A上的等价关系, xA,令

[x]R = {y | yAxRy}

定理7.14 R是非空集合A上的等价关系,

(1) xA, [x]A的非空子集

(2) x,yA, 如果 xRy, [x] = [y]

(4) {[x] | xA}=A

(1) 由定义, xA[x]A. x[x], [x]非空.

(2) 任取 z, 则有

z[x] <x,z>R <z,x>R

<z,x>R<x,y>R <z,y>R <y,z>R

从而证明了z[y]. 综上所述必有 [x][y]. 同理可证 [y][x]. 这就得到了[x] = [y].

(4) 先证{[x] | xA} A. 任取y,

y{[x] | xA} x(xAy[x])

y[x][x] A yA

从而有{[x] | xA} A

再证A {[x] | xA}. 任取y,

yA y[y]yA y∈∪{[x] | xA}

从而有{[x] | xA} A成立.

综上所述得{[x] | xA} = A.

定义7.17 R 为非空集合A上的等价关系, R 的所有等价类作为元素的集合称为A关于R商集, 记做A/R, A/R = {[x]R | xA}

实例 设 A={1,2,…,8}A关于模3等价关系R的商集为

A/R = {{1,4,7}, {2,5,8}, {3,6}}

定义7.18 A为非空集合, A的子集族π(π P(A))满足:

(1) π

(2) xy(x,yπxyxy=)【两两不交】

(3) π = A

则称πA的一个划分, π中的元素为A划分块.

根据等价类的性质以及划分的定义,显然有下面的结论:

1商集就是A的一个划分,等价类就是划分块。

2)给定集合A上的一个等价关系R决定了A的一个划分,并且不同的等价关系将对应于不同的划分。

3给定集合A的一个划分确定该集合上的一个等价关系

定义4.17 R为非空集合A上的关系,如果R自反的和对称的,则称RA上的相容关系

根据该定义,相容关系有以下三个性质:

1)所有的等价关系都是相容关系。

2)相容关系的关系矩阵主对角线全为1且是对称矩阵。

3)相容关系的关系图每一个节点上都有环,且每两个不同节点间如果有边,一定有方向相反的两条边。

相容关系的图形表示中,每个环不必画出,两个元素之间方向相反的有向边用一条无向边替代,这样的图称为相容关系的简化关系图

定义4.18 R是非空集合A上的相容关系,集合C A,若对任意的x, yC都有xRy成立,则称C是由相容关系R产生的相容类

如果RA上的相容关系, C是由相容关系R产生的相容类,从定义可看出:

1)相容类C一定是A的子集。

2)因为相容关系R是自反的,即xA, 有xRx,所以{x}是由相容关系R产生的一个相容类,即A中的任何元素组成的单元素集是由相容关系R产生的一个相容类。

定义4.19 R是非空集合A上的相容关系,CR产生的相容类。如果它不是其他任何相容类的真子集,则称C最大相容类,记为CR

根据定义4.19,最大相容类CR具有如下的性质:

1CR中任意元素xCR中的所有元素都有相容关系R

2A - CR中没有一个元素与CR中的所有元素都有相容关系R

利用相容关系的简化关系图求最大相容类的方法

1)最大完全多边形的顶点构成的集合是最大相容类。

2)孤立点构成的集合是最大相容类。

3)如果一条边不是任何完全多边形的边,则它的两个端点构成的集合是最大相容类。

   

定理4.20 R是非空有限集合A上的相容关系,CR产生的相容类,那么必存在最大相容类CR,使得CCR

定义4.20 A是非空集合,若A的子集族满足以下条件:

1

2

则称为集合A的一个覆盖

定理4.21 A是有限集合,RA上的相容关系,由R产生的所有最大相容类构成的集合是A覆盖,叫作集合A完全覆盖,记为CR(A)

定理4.22 给定集合A的覆盖{A1, A2,... ,An},则由它确定的关系R= A1A1A2A2... AnAnA上的相容关系。

定理4.23 集合A上的相容关系R与完全覆盖CR(A)存在一一对应。

   

定义7.19

偏序关系非空集合A上的自反、反对称和传递的关系,记作. 为偏序关系, 如果 <x, y> ∈≼, 则记作 x y, 读作x"小于或等于"y.

定义7.20 R 为非空集合A上的偏序关系,

(1) x, yA, xy可比 x yy x

(2) 任取元素 x y, 可能有下述几种情况发生:x y (y x), xy, xy不是可比的

定义7.21 R 为非空集合A上的偏序关系, x,yA, xy都是可比的,则称R全序(或线序)

定义7.22 x,yA, 如果 xy 且不存在 zA 使得 xzy, 则称 y覆盖x.

定义7.23 集合AA上的偏序关系一起叫做偏序集, 记作<A,>.

哈斯图: 利用偏序关系的自反、反对称、传递性进行简化的关系图

特点:

(1) 每个结点没有环

(2) 两个连通的结点之间的序关系通过结点位置的高低表示,位置低的元素的顺序在前

(3) 具有覆盖关系的两个结点之间连边

偏序集<A, >哈斯图的画法如下:

1)用"°"表示A中的每一个元素;

2x, yA,若x<y,则把x画在y的下面;

3x, yA,若y盖住x ,则用一条线段连接xy

定义7.24 <A,>为偏序集, BA, yB

(1) x(xByx)成立, 则称 y B最小元

(2) x(xBxy)成立, 则称 y B最大元

(3) x(xBxyx=y)成立, 则称 y B极小元

(4) x(xByxx=y)成立, 则称 y B极大元

性质:

(1) 对于有穷集,极小元和极大元一定存在,可能存在多个.

(2) 最小元和最大元不一定存在,如果存在一定惟一.

(3) 最小元一定是极小元;最大元一定是极大元.

(4) 孤立结点既是极小元,也是极大元.

定义7.25 <A, >为偏序集, BA, yA

(1) x(xBxy)成立, 则称yB上界

(2) x(xByx)成立, 则称yB下界

(3) C{y| yB的上界}, C的最小元为B最小上界上确界

(4) D{y| yB的下界}, D的最大元为B最大下界下确界

   

性质:

(1) 下界、上界、下确界、上确界不一定存在

(2) 下界、上界存在不一定惟一

(3) 下确界、上确界如果存在,则惟一

(4) 集合的最小元是其下确界,最大元是其上确界;反之不对.

   

   

   

关系性质的证明方法

1. 证明R在A上自反

任取x,

xA ……………………..….……. <x,x>R

前提 推理过程 结论

2. 证明R在A上对称

任取<x,y>,

<x,y> R ………………………………. <y,x>R

前提 推理过程 结论

3. 证明RA上反对称

任取<x,y>,

<x,y>R<y,x>R …………………….. x = y

前提 推理过程 结论

4. 证明RA上传递

任取<x,y>,<y,z>,

<x,y>R<y,z>R …………………….. <x,z>R

前提 推理过程 结论

关系等式或包含式的证明方法

数学归纳法(主要用于幂运算)

证明中用到关系运算的定义和公式, 如:

  • xdomR y(<x,y>R)
  • yranR x(<x,y>R)
  • <x,y>R <y,x>R1
  • <x,y>RS t (<x,t>RÙ<t,y>S)
  • <x,y>R A xA <x,y>R
  • yR A] x (xA <x,y>R)
  • r(R) = RIA
  • s(R) = RR1
  • t(R) = RR

   

基本要求

熟练掌握关系的三种表示法

能够判定关系的性质(等价关系或偏序关系)

掌握含有关系运算的集合等式

掌握等价关系、等价类、商集、划分、哈斯图、偏序集等概念

计算A´B, dom R, ranR, fldR, R-1, R°S , Rn , r(R), s(R), t(R)

求等价类和商集A/R

给定A的划分p,求出p 所对应的等价关系

求偏序集中的极大元、极小元、最大元、最小元、上界、下界、上确界、下确界

掌握基本的证明方法

证明涉及关系运算的集合等式

证明关系的性质、证明关系是等价关系或偏序关系7

   

  • 29
    点赞
  • 96
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值