为了减少代码冗余,可以使用代码块,如函数、类等等
GoogleNet
代码
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
import torch.nn.functional as F # 激活函数relu
import torch.optim as optim
# # step1 准备数据集
batch_size = 64
transform = transforms.Compose([ # 将下列的内容构成pipline
transforms.ToTensor(), # 把原始数据转为张量 PIL图像0-255转为图像张量0-1
transforms.Normalize((0.1307, ), (0.3081, )) # 归一化 做normalization, 前为均值,后为标准差 数据标准化
])
train_dataset = datasets.MNIST(root='../dataset/mnist', train=True, download=False, transform=transform)
test_dataset = datasets.MNIST(root='../dataset/mnist', train=False, download=False, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
# # step2 模型GoogleNet
class Inception(nn.Module):
def __init__(self, in_channels):
super(Inception, self).__init__()
self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)
self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)
self.branch5x5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)
self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)
self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)
def forward(self, x):
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
branch_pool = self.branch_pool(branch_pool)
branch1x1 = self.branch1x1(x)
branch5x5 = self.branch5x5_1(x)
branch5x5 = self.branch5x5_2(branch5x5)
branch3x3 = self.branch3x3_1(x)
branch3x3 = self.branch3x3_2(branch3x3)
branch3x3 = self.branch3x3_3(branch3x3)
out = [branch1x1, branch5x5, branch3x3, branch_pool]
return torch.cat(out, dim=1) # b c w h 通道数:24+24+24+16=88
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(88, 20, kernel_size=5)
self.cep1 = Inception(in_channels=10)
self.cep2 = Inception(in_channels=20)
self.pool = nn.MaxPool2d(2)
self.fc = nn.Linear(1408, 10)
def forward(self, x):
in_size = x.size(0)
x = F.relu(self.pool(self.conv1(x)))
x = self.cep1(x)
x = self.pool(F.relu(self.conv2(x)))
x = self.cep2(x)
x = x.view(in_size, -1)
x = self.fc(x)
return x
model = Model()
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # 使用GPU
model.to(device) # 转为CUDA tensor
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # 冲量
# # step3 训练和测试
def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data
inputs, target = inputs.to(device), target.to(device)
optimizer.zero_grad() # 优化器清零
outputs = model(inputs) # 前馈
loss = criterion(outputs, target)
loss.backward() # 反馈
optimizer.step() # 更新
running_loss += loss.item()
if batch_idx % 300 == 299: # 每300次输出一次loss
print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
running_loss = 0.0
def test():
correct = 0
total = 0
with torch.no_grad(): # 测试时候不需要梯度
for data in test_loader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = model(images) # 输出是一个矩阵 10列
_, predicted = torch.max(outputs.data, dim=1) # 取出每一行的最大值,对应分类,返回最大值和最大值的下标
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy on test set: %d %%' % (100 * correct / total))
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
if epoch % 10 == 9:
test()
结果图
ResNet
代码
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
import torch.nn.functional as F # 激活函数relu
import torch.optim as optim
# # step1 准备数据集
batch_size = 64
transform = transforms.Compose([ # 将下列的内容构成pipline
transforms.ToTensor(), # 把原始数据转为张量 PIL图像0-255转为图像张量0-1
transforms.Normalize((0.1307, ), (0.3081, )) # 归一化 做normalization, 前为均值,后为标准差 数据标准化
])
train_dataset = datasets.MNIST(root='../dataset/mnist', train=True, download=False, transform=transform)
test_dataset = datasets.MNIST(root='../dataset/mnist', train=False, download=False, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
# # step2. 模型ResNet
class Residual(nn.Module):
def __init__(self, channels):
super(Residual, self).__init__()
self.channel = channels
self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
def forward(self, x):
y = F.relu(self.conv1(x))
y = self.conv2(y)
return F.relu(x + y)
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.conv1 = nn.Conv2d(1, 16, kernel_size=5)
self.conv2 = nn.Conv2d(16, 32, kernel_size=5)
self.pool = nn.MaxPool2d(2)
self.block1 = Residual(16)
self.block2 = Residual(32)
self.fc = nn.Linear(512, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.block1(x)
x = self.pool(F.relu(self.conv2(x)))
x = self.block2(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
model = Model()
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # 使用GPU
model.to(device) # 转为CUDA tensor
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # 冲量
# # step3 训练和测试
def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data
inputs, target = inputs.to(device), target.to(device)
optimizer.zero_grad() # 优化器清零
outputs = model(inputs) # 前馈
loss = criterion(outputs, target)
loss.backward() # 反馈
optimizer.step() # 更新
running_loss += loss.item()
if batch_idx % 300 == 299: # 每300次输出一次loss
print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
running_loss = 0.0
def test():
correct = 0
total = 0
with torch.no_grad(): # 测试时候不需要梯度
for data in test_loader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = model(images) # 输出是一个矩阵 10列
_, predicted = torch.max(outputs.data, dim=1) # 取出每一行的最大值,对应分类,返回最大值和最大值的下标
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy on test set: %d %%' % (100 * correct / total))
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
if epoch % 10 == 9:
test()