PyTorch深度学习实践(刘二大人)---第十讲 卷积神经网络(基础篇)

 
 第一部分代码
import torch
import torch.nn as nn


input = [3, 4, 6, 5, 7,
         2, 4, 6, 8, 2,
         1, 6, 7, 8, 4,
         9, 7, 4, 6, 2,
         3, 7, 5, 4, 1]
inputs = torch.Tensor(input).view(1, 1, 5, 5)  # Batch Channel W H
conv_layer = nn.Conv2d(1, 1, kernel_size=3, padding=1, bias=False)
kernel = torch.Tensor([1, 2, 3, 4, 5, 6, 7, 8, 9]).view(1, 1, 3, 3)  # 卷积核  O I W H
conv_layer.weight.data = kernel.data
output = conv_layer(inputs)
print(output)
 第二部分代码
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
import torch.nn.functional as F  # 激活函数relu
import torch.optim as optim


# # step1 准备数据集
batch_size = 32
transform = transforms.Compose([                                              # 将下列的内容构成pipline
                                transforms.ToTensor(),                        # 把原始数据转为张量   PIL图像0-255转为图像张量0-1
                                transforms.Normalize((0.1307, ), (0.3081, ))  # 归一化 做normalization, 前为均值,后为标准差  数据标准化
                                ])
train_dataset = datasets.MNIST(root='../dataset/mnist', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='../dataset/mnist', train=False, download=True, transform=transform)

train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)


# # step2 设计模型
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.pool = nn.MaxPool2d(2)
        self.fc = nn.Linear(320, 10)

    def forward(self, x):
        batch_size = x.size(0)                  # 1*28*28 样本数量
        x = self.pool(F.relu(self.conv1(x)))    # 10*24*24  -> 10*12*12
        x = self.pool(F.relu(self.conv2(x)))    # 20*8*8    -> 20*4*4=320
        x = x.view(batch_size, -1)              # 变成全连接网络想要的输入 batch*320
        x = self.fc(x)                          # 全连接(用交叉熵损失,所以最后一层不用激活函数)
        return x


model = Model()
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')  # 使用GPU
model.to(device)   # 转为CUDA tensor

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)  # 冲量


# # step3 训练和测试
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        inputs, target = inputs.to(device), target.to(device)
        optimizer.zero_grad()             # 优化器清零

        outputs = model(inputs)           # 前馈
        loss = criterion(outputs, target)
        loss.backward()                   # 反馈
        optimizer.step()                  # 更新

        running_loss += loss.item()
        if batch_idx % 300 == 299:        # 每300次输出一次loss
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0


def test():
    correct = 0
    total = 0
    with torch.no_grad():                                   # 测试时候不需要梯度
        for data in test_loader:
            images, labels = data
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)                         # 输出是一个矩阵 10列
            _, predicted = torch.max(outputs.data, dim=1)  # 取出每一行的最大值,对应分类,返回最大值和最大值的下标
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('Accuracy on test set: %d %%' % (100 * correct / total))


if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        if epoch % 10 == 9:
            test()

结果图

作业
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
import torch.nn.functional as F  # 激活函数relu
import torch.optim as optim


# # step1 准备数据集
batch_size = 64
transform = transforms.Compose([                                              # 将下列的内容构成pipline
                                transforms.ToTensor(),                        # 把原始数据转为张量   PIL图像0-255转为图像张量0-1
                                transforms.Normalize((0.1307, ), (0.3081, ))  # 归一化 做normalization, 前为均值,后为标准差  数据标准化
                                ])
train_dataset = datasets.MNIST(root='../dataset/mnist', train=True, download=False, transform=transform)
test_dataset = datasets.MNIST(root='../dataset/mnist', train=False, download=False, transform=transform)

train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)


# # step2 设计模型
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.conv1 = nn.Conv2d(1, 8, kernel_size=3, stride=1)
        self.conv2 = nn.Conv2d(8, 16, kernel_size=3, stride=1)
        self.conv3 = nn.Conv2d(16, 32, kernel_size=3, stride=1)
        self.pool = nn.MaxPool2d(2)
        self.fc1 = nn.Linear(32, 20)
        self.fc2 = nn.Linear(20, 16)
        self.fc3 = nn.Linear(16, 10)

    def forward(self, x):
        batch_size = x.size(0)                  # 1*28*28 样本数量
        x = self.pool(F.relu(self.conv1(x)))    # 8*13*13
        x = self.pool(F.relu(self.conv2(x)))    # 16*6*6
        x = self.pool(F.relu(self.conv3(x)))    # 32*2*2=128
        x = x.view(batch_size, -1)              # 变成全连接网络想要的输入 batch*320
        x = self.fc1(x)                          # 全连接(用交叉熵损失,所以最后一层不用激活函数)
        x = self.fc2(x)
        x = self.fc3(x)
        return x


model = Model()
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')  # 使用GPU
model.to(device)   # 转为CUDA tensor

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)  # 冲量


# # step3 训练和测试
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        inputs, target = inputs.to(device), target.to(device)
        optimizer.zero_grad()             # 优化器清零

        outputs = model(inputs)           # 前馈
        loss = criterion(outputs, target)
        loss.backward()                   # 反馈
        optimizer.step()                  # 更新

        running_loss += loss.item()
        if batch_idx % 300 == 299:        # 每300次输出一次loss
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0


def test():
    correct = 0
    total = 0
    with torch.no_grad():                                   # 测试时候不需要梯度
        for data in test_loader:
            images, labels = data
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)                         # 输出是一个矩阵 10列
            _, predicted = torch.max(outputs.data, dim=1)  # 取出每一行的最大值,对应分类,返回最大值和最大值的下标
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('Accuracy on test set: %d %%' % (100 * correct / total))


if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        if epoch % 10 == 9:
            test()
 结果图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值