- 博客(11)
- 问答 (5)
- 收藏
- 关注
原创 MTU-Net: Multilevel TransUNet for Space-Based Infrared Tiny Ship Detection
该模型采用视觉Transformer(ViT)卷积神经网络(CNN)混合编码器提取多层次特征,并使用复制-旋转-缩放-粘贴(CRRP)数据增强技术加速训练过程。高分辨率的图像被分为块输入到resnet去提取特征,因为需要识别多种可疑类型目标,因此需要使用long-distance 信息,使用MVTM去细化特征。目标像素在1-10左右,尺度不定。如果概率图得到的点在其邻域内有重叠,则这两个点被认为是邻接像素,若他们的值相等,则认为他们属于同一目标区域,一旦找到了所有像素点,即可获得中心点。
2023-11-10 18:52:27 635 1
原创 Promoting Single-Modal Optical Flow Network for Diverse Cross-Modal Flow Estimation
AAAI2022论文阅读笔记
2023-08-21 11:38:42 221 1
原创 GLU-Net: Global-Local Universal Network for Dense Flow and Correspondences
CVPR2021论文阅读GLU-Net
2023-08-14 16:40:13 269
原创 MatchFlow: Rethinking Optical Flow from Geometric Matching Consistent Perspective
CVPR2023论文MatchFlow阅读
2023-08-14 11:53:50 450
原创 DKM: Dense Kernelized Feature Matching for Geometry Estimation
CVPR2023论文阅读DKM
2023-08-14 10:07:39 1865
原创 (PDC-Net)Learning Accurate Dense Correspondences and When to Trust Them
论文阅读
2023-08-11 10:04:42 326 1
原创 AnyFlow: Arbitrary Scale Optical Flow with Implicit Neural Representation
对图二的特征图利用上采样的光流变形为图1,将得到的特征图与图1的特征图拼接,卷积。在光流估计时,场景几何和物体的运动的耦合,因此反问题估计运动很难,通常时假设局部领域一致性,并加入额外的先验来约束解空间,例如变分先验,平滑先验。基于深度学习的方法受限于采样和分辨率,目前的方法有的利用迭代细化更好的估计小的高速运动的物体,有的加入注意力机制解决大位移遮挡问题。为了更好的泛化性,r变大,更适合大位移,r变小更适合小位移,因此将r也作为网络预测的输出,同残差流的估计,初始的r0为超参数。噪声估计->变分先验。
2023-07-05 15:09:42 443 1
原创 R2D2:Repeatable and Reliable Detector and Descriptor
论文阅读R2D2: Repeatable and Reliable Detector and Descriptor
2023-03-22 10:52:54 538
原创 D2-net:A Trainable CNN for Joint Description and Detection of Local Features
论文阅读D2-Net: A Trainable CNN for Joint Description and Detection of Local Features
2023-03-21 17:03:23 365 1
原创 论文阅读EfficientNeighbourhood Consensus Networks via Submanifold Sparse Convolutions
论文阅读笔记Sparse NC-Net
2023-03-16 21:16:53 169
空空如也
不同版本ros2多机通信
2022-03-27
emmc如何烧录ubuntu18.04
2022-01-08
ros2订阅时通过回调函数传递参数
2021-12-26
ubuntu18.04在ros2下配置px4
2021-10-27
ubuntu20.04安装gazebo9
2021-10-12
TA创建的收藏夹 TA关注的收藏夹
TA关注的人