(PDC-Net)Learning Accurate Dense Correspondences and When to Trust Them

Computer Vision Lab, ETH Zurich, Switzerland   2021CVPR

 光流+匹配 dense matching ,得到一张置信图表示其准确性和可靠性。除了流估计,还加入不确定性估计,将其不确定性分布参数化作为混合模型的约束,此外利用自监督的学习方法训练网络

Background 

Dense flow: homogeneous, large displacement.对于下游任务而言,需要知道的是哪里的,何时的匹配是正确的,因此需要置信图

自监督的方法稠密图像匹配:GLU-Net,DGC-Net(预测了匹配得分)没有很好的建模物体的运动,外观变化和遮挡

光流不确定性:aleatoric uncertainty(随机不确定性) and epistemic uncertainty(认知不确定性),目前的方法ProbFlow,HD3F等限制于光流问题(位移和视角变换小)

Idea

Expand the domain of dense matching by learn to predict reliable confident values

同时学习流和概率不确定性(利用correlation volume),结合像素级的置信度图。在光流估计中通常预测方差作为不确定性

改进self-supervise数据的生成

迭代细化预测

Method

利用高斯或拉普拉斯分布建模预测的概率,空间中每个点的概率模型的参数平均值和方差由网络预测得到

受限混合模型预测

GLU-Net将误差分为内点和外点,使用拉普拉斯分布模型通过预测一个方差,易得到内点和外点,但是需要的不是确定该匹配是内点还是外点,并且单一变量的拉普拉斯仅预测一个方差,在复杂情况下不适用

        混合模型:

        为了适用于复杂场景,将分布由M个部分组成,其中a控制权重,每个分布的均值一样,即估计的光流,方差不同

        混合约束:网络为空间中的每个位置预测平均光流,方差,权重,其中需要考虑转置不变性问题。改变单个模块的顺序,结果不变。

因此对上述模块中每个元素m取一个方差变化范围,方差对光流两个方向取同一值,每个元素都对应于absolute error图中的一部分,首先预测了一个无约束值hm。网络可以有效的将每个流预测分类到不同的不确定性区间

训练目标:

网络架构

自监督训练依赖了许多合成或变形的图像或标注的数据。训练合成图像时,有全局光滑的假设,在复杂场景表现不好

Correlation uncertain module:直接增加head可以预测分布参数,但是得到的参数主要依赖于局部领域,忽略了外观信息和特定位置的匹配。利用cost volume的2D切片,独立解码

不确定预测:加入了预测的光流信息拼接,见上图

自监督训练的数据不确定性

网络依靠一个全局的光滑性和插值完成,当使用合成的图片完成训练时,其训练的方法是的数据泛化性不好。

目标是生成比简单的单应变换更不可预测的合成运动,使得网络不太依靠插值完成。

给一对图像通过简单单应变换得到其流预测,通过对参考图像加入局部扰动可以知道流由简单的单应变换加扰动组成。而且引入扰动使得网络学会不确定区域的判别。扰动打破了合成流的全局光滑性,在这些像素上的误差更大,因此对这些区域需要估计更大的不确定性

Geometric Matching Inference

置信度:通过对平均流周围R半径的R的光流结果计算概率

multi-stage flow estimation:

        将光流估计分为两个部分,其中一种估计简单的变换,作为推理最终光流的初始化。

        将第一次得到的结果和第二次的输入图像对齐,直接将网络重复适用

Experiment

金子塔网络

基本框架:GLU-Net-GOCor

两阶段训练:首先单应变换,加扰动。再用于带有稀疏真值的真实图像(Megadeapth)

### 回答1: 1 channel pruned yolov5-based深度学习方法是一种快速准确的物体检测方法。 Yolov5是一种深度学习模型,用于目标检测任务。它具有快速高效的特点,适用于需要实时处理大量目标的场景。然而,传统的yolov5模型在一些应用中存在着计算复杂度高、模型参数多等问题。 为了解决这些问题,提出了一种基于通道剪枝的方法。通道剪枝是一种模型压缩技术,通过减少模型中的参数量和计算量,来实现模型的快速推理。 该方法首先对初始的yolov5模型进行训练,然后使用通道剪枝算法来剪枝模型中的冗余通道。剪枝后,模型的参数数量和计算量显著减少,同时保持了模型的准确性。 经过实验证明,采用1 channel pruned yolov5-based深度学习方法的物体检测任务的准确性与传统yolov5模型相当,但速度更快。这种方法具有广泛的应用前景,可以在实时场景下实现快速高效的目标检测,如智能交通系统、安防监控等。 总而言之,1 channel pruned yolov5-based深度学习方法是一种快速准确的物体检测方法,通过通道剪枝技术实现模型的压缩,提高了模型的计算效率,适用于需要实时处理大量目标的应用场景。 ### 回答2: 1通道修剪 YOLOv5 基于深度学习的快速准确方法: 深度学习在计算机视觉领域的广泛应用,如目标检测和识别,已经取得了显著的成果。然而,现有的深度学习模型在实时性和准确性之间存在着一种权衡。为了解决这个问题,我们提出了一种基于 YOLOv5 的通道修剪方法,能够实现同时快速和准确的目标检测。 通道修剪是一种通过减少模型中的冗余通道来实现模型压缩和加速的技术。我们观察到,在YOLOv5这样的目标检测模型中,存在着一些冗余的通道,这些通道对目标检测的准确性没有太大的贡献。因此,我们利用剪枝算法对模型中的冗余通道进行剪枝,从而减小模型的大小并提高模型的推理速度。 具体而言,我们首先通过分析模型中各个通道对目标检测的贡献来确定哪些通道是冗余的。然后,我们使用剪枝算法对这些冗余通道进行剪枝,剔除它们对模型推理的影响。通过这种方式,我们实现了模型的压缩和加速。 我们在几个常见的目标检测数据集上进行了实验,结果表明,我们的通道修剪方法不仅能够在保持高准确性的同时,大大减小模型的大小,还能够显著提高模型的推理速度。这使得我们的方法在需要快速而准确的目标检测的场景下具有很大的应用潜力,例如实时视频分析和自动驾驶等领域。 总而言之,我们提出的基于 YOLOv5 的通道修剪方法,通过剪枝冗余通道实现了模型的快速和准确的目标检测。我们的方法对于需要实时性和准确性的应用具有很大的潜力,在未来的研究中可以进一步优化和扩展。 ### 回答3: 基于Yolov5的深度学习方法是一种用于快速而准确的目标检测的通道剪枝方法。 在目标检测任务中,Yolov5是一种常用的深度学习模型,它能够高效地检测图像中的多个目标物体。然而,由于模型设计较为复杂,计算量较大,因此需要较长的处理时间。 为了解决这个问题,研究人员提出了一种基于通道剪枝的方法来对Yolov5模型进行优化。通道剪枝是一种模型压缩技术,它通过剪枝模型中不重要的通道(特征图)来降低计算量,从而实现模型的加速。 这种方法首先使用初始训练集进行基准训练,得到一个初始的Yolov5模型。然后,通过计算每个通道的重要性得分,对模型进行剪枝。具体而言,通道的重要性得分可以通过计算其对目标检测精度的影响来衡量。 一旦剪枝完成,剩余通道将被重新组合成一个新的模型。与原始模型相比,这个新模型计算量更小,因此能够实现更快的推理速度。同时,通过精心设计的剪枝策略和迭代训练,剪枝后模型的准确率也能得到保证。 总之,这种基于通道剪枝的Yolov5深度学习方法可以在保持高准确率的同时,显著缩短模型的推理时间。这对于需要快速且准确地进行目标检测的应用场景非常有用。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值