R2D2:Repeatable and Reliable Detector and Descriptor

NeurIPS 2019 作者:NAVER LABSEurope

本篇文章提出了同时完成稀疏特征检测和特征描述(detect-and-descibe),作者认为显著的区域不一定具有判别性,因此会影响描述的性能,所以为描述子添加增加了一个置信度。输出稠密的描述子+可靠性(匹配)和可重复性(检测)的置信度,得到的匹配是两个置信度的最大化。---无监督学习

Background

传统的特征检测和描述是先检测特征点再完成局部描述符,人工设计的方法受限于先验知识,深度学习的方法可以自动找到适合的表示方法,但目前的许多方法都只关注关键点检测的重复性

度量学习的方法在检测到的可重复性的关键点上训练得到描述子,但难以准确匹配

目前特征描述常用的方法是度量学习,使用the triplet loss或者a contrastive loss

特征检测传统方法依赖先验,深度学习方法有的对关键点的显著图峰值进行激励,有的通过自然图像变换来保留

检测+描述:LIFT、Superpoint、D2-NET(定义特征点为局部最大值)

Motivation

显著的区域不一定具有判别性,比如棋盘

Idea

关键点应该同时具备可重复性和可靠性(这两个性质互补,应该独立预测)

Method

通过全卷积神经网络得到

H×W×128的特征图,经过L2归一化得到描述子;经过平方运算+1×1的卷积+softmax得到可靠性和可重复性的置信度

可重复性:

核心思想是最大化S和S'u的相似度(cos),上图展示的过程没有考虑遮挡、边界影响和warp伪影。因此重新定义为每个块的平均相似度,其中P是一系列有重叠的N×N的块

上述损失在S和S'u取常数时可以极小化为定的常数,为避免该情况,引入了第二个损失最大化局部的峰值

最终损失为两个的加权和

可靠性:

目的是使网络在高置信度和高判别性之间选择,将描述子匹配问题看作是排序优化问题。直接优化每个块的AP(AP比triplet loss更具全局性排序)

  • 图A的descriptors和同一批其余图片的所有descriptors计算距离,得到距离矩阵(每一行则是A图与其余图B中所有块的距离),计算AP

  • 训练目标是最大化每个查询的AP,在整个批次中平均

本文认为一样的区域或者1D的图形不具有匹配的判别性,提出了一个新的损失稀疏化网络,避免浪费资源计算不必要的区域。其中K是一个阈值,如果AP小于该阈值则认为R=0

最终保留SR乘积最大的K个描述子

Experiment

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值