R2D2:Repeatable and Reliable Detector and Descriptor

NeurIPS 2019 作者:NAVER LABSEurope

本篇文章提出了同时完成稀疏特征检测和特征描述(detect-and-descibe),作者认为显著的区域不一定具有判别性,因此会影响描述的性能,所以为描述子添加增加了一个置信度。输出稠密的描述子+可靠性(匹配)和可重复性(检测)的置信度,得到的匹配是两个置信度的最大化。---无监督学习

Background

传统的特征检测和描述是先检测特征点再完成局部描述符,人工设计的方法受限于先验知识,深度学习的方法可以自动找到适合的表示方法,但目前的许多方法都只关注关键点检测的重复性

度量学习的方法在检测到的可重复性的关键点上训练得到描述子,但难以准确匹配

目前特征描述常用的方法是度量学习,使用the triplet loss或者a contrastive loss

特征检测传统方法依赖先验,深度学习方法有的对关键点的显著图峰值进行激励,有的通过自然图像变换来保留

检测+描述:LIFT、Superpoint、D2-NET(定义特征点为局部最大值)

Motivation

显著的区域不一定具有判别性,比如棋盘

Idea

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值