题目描述:
数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 有效的 括号组合
输入:n = 3
输出:["((()))","(()())","(())()","()(())","()()()"]
分析:
这道题目也是在动态规划里的,但是个人觉得和一般的动态规划不同。主要还是搜索问题,其中满足条件的字符串,满足每个前缀字串中的左括号的数量都大于右括号的数量。
在满足这个条件的情况下,我们在生成满足条件的字串的时如果剩余的左括号的数量等于右括号数量,那么一定要先生成左括号。否则,如果先生成右括号,这个字符串就是不满足条件的。
因此我们做如下方法:
class Solution:
def generateParenthesis(self, n: int) -> List[str]:
ans =[]
P = ""
def gen(lef, rig, P, ans):
% lef和rig表示剩余左括号和右括号的数量
if lef == 0 and rig == 0:
ans.append(P)
return
if lef >= rig:
% 如果lef大于rig,先生成左括号
P = P + '('
gen(lef - 1, rig, P, ans)
else:
if lef > 0:
P1 = P + '('
% 注意需要用P1来表示,否则当加右括号的时候,P就先加了一个左括号
gen(lef - 1, rig, P1, ans)
if rig > 0:
P2 = P + ')'
gen(lef, rig - 1, P2, ans)
gen(n, n , P, ans)
return ans
最终结果好像一般: