LeetCode 括号生成(动态规划,详细)

该文章介绍了一个编程问题,目标是根据给定的数字n生成所有可能的有效括号组合。通过递归的方式,对于每个n,将问题分解为较小的部分,即在已知n-1的情况下,如何添加一对括号到已有组合中。算法首先处理n=0和n=1的特殊情况,然后通过遍历所有可能的内外括号分布来生成n对括号的所有组合。
摘要由CSDN通过智能技术生成

数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 有效的 括号组合。

示例 1:

输入:n = 3

输出:["((()))","(()())","(())()","()(())","()()()"]

示例 2:

输入:n = 1

输出:["()"]

提示:

1 <= n <= 8

题解:

当我们清楚所有 i<n 时括号的可能生成排列后,对与 i=n 的情况,我们考虑整个括号排列中最左边的括号。它一定是一个左括号,那么它可以和它对应的右括号组成一组完整的括号 "( )",我们认为这一组是相比 n-1 增加进来的括号。那么,剩下 n-1 组括号有可能在哪呢?

剩下的括号要么在这一组新增的括号内部,要么在这一组新增括号的外部(右侧)。既然知道了 i<n 的情况,那我们就可以对所有情况进行遍历:"(" + 【i=p时所有括号的排列组合】 + ")" + 【i=q时所有括号的排列组合】其中 p + q = n-1,且 p q 均为非负整数。事实上,当上述 p 从 0 取到 n-1,q 从 n-1 取到 0 后,所有情况就遍历完了。

注:上述遍历是没有重复情况出现的,即当 (p1,q1)≠(p2,q2) 时,按上述方式取的括号组合一定不同。

代码如下:

class Solution {
public:
    vector<string> generateParenthesis(int n) {
        if(n==0)
            return {""};
        if(n==1)
            return {"()"};
        vector<vector<string>>S(n+1);
        S[0].push_back("");
        S[1].push_back("()");
        for(int i=2;i<=n;i++){
            for(int j=0;j<i;j++){
                for(string s1:S[j]){
                    for(string s2:S[i-1-j]){
                        string str="("+s1+")"+s2;
                        S[i].push_back(str);
                    }
                }
                    
            }
        }
        return S[n];
    }
};

样例运行结果如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值