数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 有效的 括号组合。
示例 1:
输入:n = 3
输出:["((()))","(()())","(())()","()(())","()()()"]
示例 2:
输入:n = 1
输出:["()"]
提示:
1 <= n <= 8
题解:
当我们清楚所有 i<n 时括号的可能生成排列后,对与 i=n 的情况,我们考虑整个括号排列中最左边的括号。它一定是一个左括号,那么它可以和它对应的右括号组成一组完整的括号 "( )",我们认为这一组是相比 n-1 增加进来的括号。那么,剩下 n-1 组括号有可能在哪呢?
剩下的括号要么在这一组新增的括号内部,要么在这一组新增括号的外部(右侧)。既然知道了 i<n 的情况,那我们就可以对所有情况进行遍历:"(" + 【i=p时所有括号的排列组合】 + ")" + 【i=q时所有括号的排列组合】其中 p + q = n-1,且 p q 均为非负整数。事实上,当上述 p 从 0 取到 n-1,q 从 n-1 取到 0 后,所有情况就遍历完了。
注:上述遍历是没有重复情况出现的,即当 (p1,q1)≠(p2,q2) 时,按上述方式取的括号组合一定不同。
代码如下:
class Solution {
public:
vector<string> generateParenthesis(int n) {
if(n==0)
return {""};
if(n==1)
return {"()"};
vector<vector<string>>S(n+1);
S[0].push_back("");
S[1].push_back("()");
for(int i=2;i<=n;i++){
for(int j=0;j<i;j++){
for(string s1:S[j]){
for(string s2:S[i-1-j]){
string str="("+s1+")"+s2;
S[i].push_back(str);
}
}
}
}
return S[n];
}
};
样例运行结果如下: