python 自带的sum函数与numpy中sum两者巨大的区别

Python自带的sum函数与numpy中的sum函数有着天壤之别,没弄懂之前踩了大坑。

1、Python 自带的sum

Python自带的sum输入是个可迭代的。可以是列表,数组,可迭代对象。此时sum最多有两个参数第一个参数是可迭代的。当有两个参数时,第二个参数只能是个数。

格式:sum(iterable, start)=可迭代的所有相加和+start值

1.1 列表

 

 

 

 

 

 

上面可见,sum只能将单层的列表中的元素相加,当是复合列表时,出现错误。

 

 

 

 

 

 

1.2  数组时,sum结果为按照输入数组的第0维度进行相加,且默认按照-1维度进行相加(也就是最高维度)。如下所示

 

2、numpy中的sum函数

numpy中的函数就是我们常见的sum函数,输入可以是列表,元组,数组。对于数组可以指定维度进行相加。默认为axis=none,sum将所有的元素相加,其余的这里比较简单常见就不一一介绍了。

Python编程sum()函数是一个非常实用和灵活的工具,用于计算数据的总和。无论是处理整数、浮点数还是混合列表,sum()函数都可以帮助您计算它们的和。此外,sum()函数还支持在计算总和添加初始值,使其更加灵活。因此,sum()函数Python被广泛应用于数学计算和数据处理。\[1\] 使用sum()函数的方法有多种。首先,您可以直接将一个列表作为参数传递给sum()函数,它将返回列表所有元素的总和。例如,sum(\[1, 2, 3\])将返回6。\[2\] 除了列表,sum()函数还可以处理元组和集合等对象。您可以将它们作为参数传递给sum()函数,并得到它们的总和。例如,sum((1, 2, 3))将返回6,sum({1, 2, 3})也将返回6。\[3\] 如果您使用的是NumPy库,您可以使用np.sum()函数来计算数组的总和。np.sum()函数可以处理多维数组,并支持在不同的轴上进行求和。例如,np.sum(\[\[1, 2, 3\], \[4, 5, 6\]\])将返回21,np.sum(\[\[1, 2, 3\], \[4, 5, 6\]\], axis=0)将返回\[5, 7, 9\],np.sum(\[\[1, 2, 3\], \[4, 5, 6\]\], axis=1)将返回\[6, 15\]。\[3\] 总之,Pythonsum()函数是一个非常方便的数学工具,可以用于计算各种数据类型的总和。无论是处理简单的列表还是复杂的多维数组,sum()函数都可以帮助您轻松地进行求和操作。 #### 引用[.reference_title] - *1* *2* [chatgpt赋能pythonPythonsum()函数的详解](https://blog.csdn.net/sc17332889342/article/details/130858833)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [pythonsum函数详解](https://blog.csdn.net/Dreamer_rx/article/details/100736328)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值