实战加载本地MNIST数据集(NPZ格式)

本文演示了如何下载并使用MNIST数据集,这是一个广泛用于手写数字识别的图像数据集。通过NumPy库加载数据后,分别获取了训练集和测试集的图像和标签,为机器学习模型的训练和评估做准备。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、MNIST数据集下载( 提取码: MN4S)

下载

2、加载数据

import numpy as np

#加载数据
data= np.load('MNIST_data/mnist.npz', allow_pickle=True)
x_train, y_train = data['x_train'], data['y_train']
x_test, y_test = data['x_test'], data['y_test']

#打印形状
print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)

打印结果:

(60000, 28, 28)
(60000,)
(10000, 28, 28)
(10000,)

以上代码使用了NumPy库中的np.load函数,它可以从一个保存了NumPy数组的文件中加载数据。具体来说,np.load函数的第一个参数是文件名,allow_pickle=True表示可以加载序列化的数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

缘起性空、

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值