基于数据驱动的电动车电池数据分析(一)
欢迎关注笔者的微信公众号
笔者过去一年多的时间都在国内一家头部新能源企业实习,主要参与一些数据分析和平台研发的工作。在工作中积累了一些数据分析的经验,其中新能源领域比较多的是一些化工生产,智能制造方面的数据,这些数据类型主要是时序型数据。这里就工作期间学习和总结的一些经验跟大家分享。
什么是时间序列预测
时间序列数据是一种随时间收集的数据类型,其中值按时间顺序排列,并具有与其相关的时间戳或索引。时间序列中的数据点通常在时间上间隔相等,尽管在某些情况下它们可能间隔不规则。时间序列数据通常用于研究和分析随时间变化的趋势、模式和行为,如股价、天气状况或网站访问者数量。时间序列数据可以使用各种统计和机器学习技术进行分析,以做出预测或从数据中得出见解。

时间序列预测是根据历史数据预测时间序列未来价值的过程。它是许多行业决策的关键工具,包括化工、新能源、智能制造、新材料和其他领域。时间序列预测有助于这些行业做出更明智的决策,优化生产流程,降低成本。
时间序列预测在化学工业中的主要应用之一是预测产品或过程的质量。例如,化工厂可以使用时间序列预测来预测间歇式反应器中化合物的浓度或预测化学产品的纯度。这些预测可用于优化生产过程并确保最终产品的质量。
在新能源行业