sklearn和pandas线性回归

原文链接

1. 获取数据,定义问题

\qquad 数据的介绍在这: http://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
\qquad 数据的下载地址在这:http://archive.ics.uci.edu/ml/machine-learning-databases/00294/

\qquad 里面是一个循环发电场的数据,共有9568个样本数据,每个数据有5列,分别是:AT(温度), V(压力), AP(湿度), RH(压强), PE(输出电力)。

\qquad 我们的问题是得到一个线性的关系,对应PE是样本输出,而AT/V/AP/RH这4个是样本特征, 机器学习的目的就是得到一个线性回归模型,即:
P E = θ 0 + θ 1 ∗ A T + θ 2 ∗ V + θ 3 ∗ A P + θ 4 ∗ R H PE = \theta_0 + \theta_1 * AT + \theta_2 * V + \theta_3 * AP + \theta_4 * RH PE=θ0+θ1AT+θ2V+θ3AP+θ4RH

\qquad 而需要学习的,就是 θ 0 , θ 1 , θ 2 , θ 3 , θ 4 \theta_0,\theta_1,\theta_2,\theta_3,\theta_4 θ0,θ1,θ2,θ3,θ4这5个参数

2. 整理数据

\qquad 下载后的数据可以发现是一个压缩文件,解压后可以看到里面有一个xlsx文件,我们先用excel把它打开,接着另存为csv格式,保存下来,后面我们就用这个csv来运行线性回归。

\qquad 打开这个csv可以发现数据已经整理好,没有非法数据,因此不需要做预处理。但是这些数据并没有归一化,也就是转化为均值0,方差1的格式。也不用我们搞,后面sklearn在线性回归时会先帮我们把归一化搞定。

3. 用pandas来读取数据

\qquad 用pandas读取数据:

import pandas as pd

data = pd.read_csv('Folds5x2_pp.csv')
print(data.head())  # 默认读取前5行数据

"""
      AT      V       AP     RH      PE
0   8.34  40.77  1010.84  90.01  480.48
1  23.64  58.49  1011.40  74.20  445.75
2  29.74  56.90  1007.15  41.91  438.76
3  19.07  49.69  1007.22  76.79  453.09
4  11.80  40.66  1017.13  97.20  464.43
"""

4. 准备运行算法的数据

\qquad 查看数据维度,开始准备样本特征X,我们用AT, V,AP和RH这4个列作为样本特征,准备样本输出y, 我们用PE作为样本输出。

print(data.shape)  # (9568, 5)

X = data[['AT', 'V', 'AP', 'RH']]
print(X.head())
"""
      AT      V       AP     RH
0   8.34  40.77  1010.84  90.01
1  23.64  58.49  1011.40  74.20
2  29.74  56.90  1007.15  41.91
3  19.07  49.69  1007.22  76.79
4  11.80  40.66  1017.13  97.20
"""

y = data[['PE']]
print(y.head())
"""
       PE
0  480.48
1  445.75
2  438.76
3  453.09
4  464.43
"""

5. 划分训练集和测试集

\qquad 我们把X和y的样本组合划分成两部分,一部分是训练集,一部分是测试集,代码如下:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
print("Train Data X Shape %s, y Shape %s" % (X_train.shape, y_train.shape))
print("Test Data X Shape %s, y Shape %s" % (X_test.shape, y_test.shape))
"""
Train Data X Shape (7176, 4), y Shape (7176, 1)
Test Data X Shape (2392, 4), y Shape (2392, 1)
"""

\qquad 可以看到75%的样本数据被作为训练集,25%的样本被作为测试集。

6. 运行scikit-learn的线性模型

\qquad 使用scikit-learn的线性模型来拟合。sklearn的线性回归算法使用的是最小二乘法来实现的。代码如下:

from sklearn.linear_model import LinearRegression

model = LinearRegression()
model.fit(X_train, y_train)
# 查看模拟线的截距和权重系数
print(model.intercept_)  # [447.06297099]
print(model.coef_)  # [[-1.97376045 -0.23229086  0.0693515  -0.15806957]]

\qquad 这样我们就得到了在步骤1里面需要求得的5个值。也就是说PE和其他4个变量的关系如下:
P E = 447.06297099 − 1.97376045 ∗ A T − 0.23229086 ∗ V + 0.0693515 ∗ A P − 0.15806957 ∗ R H PE = 447.06297099 -1.97376045 * AT -0.23229086*V +0.0693515*AP-0.15806957*RH PE=447.062970991.97376045AT0.23229086V+0.0693515AP0.15806957RH

7. 模型评价

\qquad 评估我们的模型的好坏程度,对于线性回归来说,我们一般用均方差(Mean Squared Error, MSE)或者均方根差(Root Mean Squared Error, RMSE)在测试集上的表现来评价模型的好坏。

import numpy as np
from sklearn import metrics

# 模型拟合测试集
y_pred = model.predict(X_test)
# 计算MSE     MSE: 20.08040120207389
print("MSE:", metrics.mean_squared_error(y_test, y_pred))
# 计算RMSE    RMSE 4.481116066570235
print("RMSE", np.sqrt(metrics.mean_squared_error(y_test, y_pred)))

\qquad 得到了MSE或者RMSE,如果我们用其他方法得到了不同的系数,需要选择模型时,就用MSE小的时候对应的参数

\qquad 比如这次我们用AT, V,AP这3个列作为样本特征。不要RH, 输出仍然是PE。代码如下:

X = data[['AT', 'V', 'AP']]
y = data[['PE']]
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)

model.fit(X_train, y_train)
# 模型拟合测试集
y_pred = model.predict(X_test)

# 计算MSE  MSE: 23.208907470136243
print("MSE:", metrics.mean_squared_error(y_test, y_pred))
# 计算RMSE  RMSE: 4.8175623991948715
print("RMSE:", np.sqrt(metrics.mean_squared_error(y_test, y_pred)))

\qquad 可以看出,去掉RH后,模型拟合的没有加上RH的好,MSE变大了。

8. 交叉验证

\qquad 我们可以通过交叉验证来持续优化模型,代码如下,我们采用10折交叉验证,即cross_val_predict中的cv参数为10:

from sklearn.model_selection import cross_val_predict

X = data[['AT', 'V', 'AP', 'RH']]
y = data[['PE']]
predicted = cross_val_predict(model, X, y, cv=10)
# 计算MSE  MSE: 20.7955974619431
print("MSE:", metrics.mean_squared_error(y, predicted))
# 计算RMSE  RMSE: 4.560219014690314
print("RMSE:", np.sqrt(metrics.mean_squared_error(y, predicted)))

\qquad 可以看出,采用交叉验证模型的MSE比第6节的大,主要原因是我们这里是对所有折的样本做测试集对应的预测值的MSE,而第6节仅仅对25%的测试集做了MSE。两者的先决条件并不同。

9. 画图观察结果

\qquad 这里画图真实值和预测值的变化关系,离中间的直线y=x直接越近的点代表预测损失越低。代码如下:

import matplotlib.pyplot as plt

# scatter 画点
plt.scatter(y, predicted)
# plot 画线
plt.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4)
plt.xlabel("Measured")
plt.ylabel("Predicted")
plt.show()

\qquad 输出的图像如下:
在这里插入图片描述

  • 1
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值