用scikit学习和pandas学习线性回归

【转】用scikit学习和pandas学习线性回归

      对于想深入了解线性回归的童鞋,这里给出一个完整的例子,详细学完这个例子,对用scikit学习来运行线性回归,评估模型不会有什么问题了。

1.获取数据,定义问题

    没有数据,当然没法研究机器学习啦。:)这里我们用UCI大学公开的机器学习数据来跑线性回归。

    数据的介绍在这里:http :  //archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant </ p>

    数据的下载地址在这:http :  //archive.ics.uci.edu/ml/machine-learning-databases/00294/ </ p>

    里面是一个循环发电场的数据,共有9568个样本数据,每个数据有5列,分别是:AT(温度),V(压力),AP(湿度),RH(压强),PE(输出电力) 。我们不用纠结于每项具体的意思。

    我们的问题是得到一个线性的关系,对应PE是样本输出,而AT / V / AP / RH这4个是样本特征,机器学习的目的就是得到一个线性回归模型,即:

    (PE = \ theta 0 + \ theta_1 AT + \ theta_2 V + \ theta_3 AP + \ theta_4 RH)

    而需要学习的,就是(\ theta_0,\ theta_1,\ theta_2,\ theta_3,\ theta_4)这5个参数。

2.整理数据

    下载后的数据可以发现是一个压缩文件,解压后可以看到里面有一个XLSX文件,我们先用Excel中把它打开,接着“另存为‘’的CSV格式,保存下来,后面我们就用这个CSV来运行线性回归。

    打开这个CSV可以发现数据已经整理好,没有非法数据,因此不需要做预处理。但是这些数据并没有归一化,也就是转化为均值为0,方差1的格式。也不用我们搞,后面scikit-学习在线性回归时会先帮我们把归一化搞定。

    好了,有了这个CSV格式的数据,我们就可以大干一场了。

3.用pandas来读取数据

    我们先打开ipython笔记本,新建一个notebook。当然也可以直接在python的交互式命令行里面输入,不过还是推荐用notebook。下面的例子和输出我都是在notebook里面跑的。

    先把要导入的库声明了:

import matplotlib.pyplot as plt
matplotlib inline
 import numpy as np
 import pandas as pd
 from sklearn import datasets,linear_model

    接着我们就可以用大熊猫读取数据了:

read_csv里面的参数是CSV在你电脑上的路径,此处CSV文件放在笔记本运行目录下面的CCPP目录里 
数据= pd.read_csv(' \ CCPP \ ccpp.csv '

    测试下读取数据是否成功:

读取前五行数据,如果是最后五行,用data.tail() 
data.head()

    运行结果应该如下,看到下面的数据,说明大熊猫读取数据成功:

 V美联社RHPE
08.3440.771010.8490.01480.48
123.6458.491011.4074.20445.75
229.7456.901007.1541.91438.76
319.0749.691007.2276.79453.09
411.8040.661017.1397.20464.43

    

4.准备运行算法的数据

    我们看看数据的维度:

data.shape

    结果是(9568,5)。说明我们有9568个样本,每个样本有5列。

    现在我们开始准备样本特征X,我们用AT,V,AP和RH这4个列作为样本特征。

X = data [[ ' AT '' V '' AP '' RH ' ]]
X.head()

    可以看到X的前五条输出如下:

 V美联社RH
08.3440.771010.8490.01
123.6458.491011.4074.20
229.7456.901007.1541.91
319.0749.691007.2276.79
411.8040.661017.1397.20

 

    接着我们准备样本输出y,我们用PE作为样本输出。

y = data [[ ' PE ' ]]
y.head()

    可以看到ÿ的前五条输出如下:

 PE
0480.48
1445.75
2438.76
3453.09
4464.43

5.划分训练集和测试集

    我们把X和ý的样本组合划分成两部分,一部分是训练集,一部分是测试集,代码如下:

 sklearn.cross_validation 导入train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state = 1)

    查看下训练集和测试集的维度:

打印X_train.shape
 打印y_train.shape
 打印X_test.shape
 打印 y_test.shape

    结果如下:

(7176,4)
(7176,1)
(2392,4)
(2392,1)    可以看到75%的样本数据被作为训练集,25%的样本被作为测试集。

   
  

6.运行scikit-learn的线性模型

    终于到了临门一脚了,我们可以用scikit学习的线性模型来拟合我们的问题了.scikit学习的线性回归算法使用的是最小二乘法来实现的代码如下:
 sklearn.linear_model 导入LinearRegression
linreg = LinearRegression()
linreg.fit(X_train,y_train)

    拟合完毕后,我们看看我们的需要的模型系数结果:

打印linreg.intercept
 print linreg.coef_

    输出如下:

[447.06297099]
[[-1.97376045 -0.23229086 0.0693515 -0.15806957]]

    这样我们就得到了在步骤1里面需要求得的5个值也就是说PE和其他4个变量的关系如下:

    (PE = 447.06297099 - 1.97376045 AT - 0.23229086 V + 0.0693515 AP -0.15806957RH)    

7.模型评价

    我们需要评估我们的模型的好坏程度,对于线性回归来说,我们一般用均方差(Mean Squared Error,MSE)或者均方根差(Root Mean Squared Error,RMSE)在测试集上的表现来评价模型的好坏。

    我们看看我们的模型的MSE和RMSE,代码如下:

模型拟合测试集 
y_pred = linreg.predict(X_test)
  sklearn 进口度量
 用scikit学习计算MSE 
打印 :MSE ,metrics.mean_squared_error(y_test,y_pred)
用scikit学习计算RMSE 
打印 RMSE:,np.sqrt(metrics.mean_squared_error(y_test,y_pred))

    输出如下:

MSE:20.0804012021
RMSE:4.48111606657

    得到了MSE或者RMSE,如果我们用其他方法得到了不同的系数,需要选择模型时,就用MSE小的时候对应的参数。

    比如这次我们用AT,V,AP这3个列作为样本特征。不要RH,输出仍然是PE。代码如下:

X = data [[ ' AT '' V '' AP ' ]]
y = data [[ ' PE ' ]]
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state = 1 from sklearn.linear_model import LinearRegression
linreg = LinearRegression()
linreg.fit(X_train,y_train)
模型拟合测试集 
y_pred = linreg.predict(X_test)
  sklearn 进口度量
 用scikit学习计算MSE 
打印 :MSE ,metrics.mean_squared_error(y_test,y_pred)
用scikit学习计算RMSE 
打印 RMSE:,np.sqrt(metrics.mean_squared_error(y_test,y_pred))

     输出如下:

MSE:23.2089074701
RMSE:4.81756239919
    可以看出,去掉RH后,模型拟合的没有加上RH的好,MSE变大了。

8.交叉验证

    我们可以通过交叉验证来持续优化模型,代码如下,我们采用10折交叉验证,即cross_val_predict中的CV参数为10:
X = data [[ ' AT '' V '' AP '' RH ' ]]
y = data [[ ' PE ' ]]
 from sklearn.model_selection import cross_val_predict
预计 = cross_val_predict(linreg,X,y,cv = 10 用scikit-learn计算MSE 
print  MSE:,metrics.mean_squared_error(y,predicted)
 用scikit-learn计算RMSE 
print  RMSE:,np。 sqrt(metrics.mean_squared_error(y,预测))

     输出如下:

MSE:20.7955974619
RMSE:4.56021901469

    可以看出,采用交叉验证模型的MSE比第6节的大,主要原因是我们这里是对所有折的样本做测试集对应的预测值的MSE,而第6节仅仅对25%的测试集做MSE了。两者的先决条件并不同。

 

9.画图观察结果

    这里画图真实值和预测值的变化关系,离中间的直线Y = X直接越近的点代表预测损失越低代码如下:

无花果,斧= plt.subplots()
ax.scatter(y,预测)
ax.plot([y.min(),y.max()],[y.min(),y.max()],' k-- ',lw = 4 
ax.set_xlabel(' Measured ' 
ax.set_ylabel(' 预测' 
plt.show()

    输出的图像如下:

    以上就是用scikit学习和大熊猫学习线性回归的过程,希望可以对初学者有所帮助。
    
(欢迎转载,转载请注明出处。欢迎沟通交流:pinard.liu@ericsson.com) 
    


     

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值