间隔时间Delta T和时间总长的计算方法

信号处理或ffmpeg中,间隔时间戳为:presentation_time(Delta T)  = frame_size/sample_rate;

frame_size:每帧数据对应的字节数

sample_rate:采样率,是指将模拟声音波形进行数字化时,每秒钟抽取声波幅度样本的次数

presentation_time(Delta T):时间间隔,也就是该帧数据播放的时间长度,单位s,如果用毫秒为单位,乘上1000即可

                               presentation_time  = frame_size*1000/sample_rate;

例如:每帧数据对应的字节数为1024,如果sample_rate==32K,对应的时间间隔为1024*1000/32000 = 32ms

 时间总长=Delta T*frame_size

信号内的数据总个数=frame_size

---------------------------------------------------------------------

DFT频率分辨率为Δf=fs/N,N为采样点数,fs 是采样率

频率范围是【0,fs】,信号内的数据总个数=frame_size

又因为采样时间Ts可以表示为:
        Ts = N/fs
因此有:
        Δf = 1/Ts;

采样时间Ts=?

Δt=fs/frame_size

采样率/分析频率 应该是=blocksize/line, line=N

频率分辨率只和采样时间长度有关,采样时间越长频率分辨率越高。采样率的选择则是根据奈奎斯特采样定理,大于2倍被采样信号频率。当然为了后边信号处理,采样率越高越好

<think>好的,用户现在想了解在LS-DYNA中如何将水射流破岩的模拟时间与实际时间进行结合或转换。首先,我需要回顾之前关于Workbench水射流的回答,确保这次回答保持连贯,但这次的重点是LS-DYNA,所以需要调整技术细节。 用户提到的引用[1]中有很多LS-DYNA的关键字,比如*ICFD相关的边界条件控制参数,这可能涉及到流固耦合(FSI)的设置。用户的问题核心是时间转换,这可能涉及到时间步长、单位系统一致性以及材料模型的动态响应。 首先,我需要考虑LS-DYNA中的显式时间积分方法,因为显式算法的时间步长通常很小,特别是当涉及高速冲击或流体动力学时。模拟时间可能远小于实际物理时间,所以需要确认单位系统是否正确。例如,使用mm-g-ms单位制时,时间单位是毫秒,用户可能需要将模拟时间转换为秒或其他实际单位。 然后,检查时间步长的控制参数,如*CONTROL_TIMESTEP,这会直接影响模拟的总步数时间。用户需要根据稳定性条件(如CFL条件)调整时间步长,确保模拟的准确性。同时,材料模型如岩石的JH-2或HJC模型可能需要应变率相关的参数,这会影响时间相关的响应,进而影响时间转换。 另外,输出控制(如*DATABASE_选项)的频率设置会影响结果的时间分辨率。用户可能需要调整输出间隔以匹配实际时间点,方便后续对比。流固耦合部分可能需要使用*ICFD*FSI关键字,确保流体结构的时间同步。 用户可能还需要进行时间缩放,比如通过调整速度或材料密度来放大时间尺度,但这会影响物理真实性,需谨慎处理。验证方面,建议用户进行简单案例的模拟,与实际实验数据对比,调整参数以达到时间一致性。 最后,用户可能的问题可能涉及单位系统设置、时间步调整方法、材料模型的影响等,需要准备好相关问题,帮助用户深入理解。</think>### LS-DYNA 水射流破岩模拟时间与实际时间的转换方法 在 LS-DYNA 中实现水射流破岩模拟时间与实际时间的结合或转换,需从**单位系统一致性**、**显式时间积分特性**及**物理过程的时间尺度匹配**三个方面入手。以下是具体分析步骤: --- #### 一、单位系统的一致性 LS-DYNA 的模拟时间基于用户定义的**单位制**(如国际单位制或 mm-g-ms 制)。例如: - **国际单位制**:时间单位为秒(s),速度单位为 m/s。 - **mm-g-ms 制**:时间单位为毫秒(ms),速度单位为 mm/ms(即 m/s)。 需确保模型中所有输入参数(如速度、材料密度、弹性模量)的单位制统一,否则时间转换会产生误差[^1]。 **示例**: 若水射流速度为 $v = 100 \, \text{m/s}$,在 mm-g-ms 制中需输入为 $v = 100 \, \text{mm/ms}$(等价于 $100 \, \text{m/s}$)。此时模拟时间 $t_{\text{sim}} = 1 \, \text{ms}$ 对应实际时间 $t_{\text{real}} = 0.001 \, \text{s}$。 --- #### 二、显式时间积分的时间步长控制 LS-DYNA 采用显式时间积分算法,其时间步长 $\Delta t$ 受**稳定性条件**(如 CFL 条件)限制: $$ \Delta t \leq \frac{\Delta x}{c} $$ 其中 $\Delta x$ 为网格尺寸,$c$ 为材料中的应力波速(例如岩石中的波速为 $c = \sqrt{E/\rho}$,$E$ 为弹性模量,$\rho$ 为密度)。 总模拟时间 $T_{\text{sim}} = N \cdot \Delta t$($N$ 为时间步数),需通过以下关键字控制: - `*CONTROL_TIMESTEP`:定义时间步长缩放因子。 - `*CONTROL_TERMINATION`:设置总模拟时间[^1]。 **关键操作**: 若需模拟实际时间 $T_{\text{real}} = 1 \, \text{s}$,在 mm-g-ms 制中需设置 `TERMINATION` 的终止时间为 $T_{\text{sim}} = 1000 \, \text{ms}$。 --- #### 三、物理过程的时间尺度匹配 水射流破岩涉及**瞬态动力学过程**(如射流冲击、裂纹扩展),需通过以下方法匹配时间尺度: 1. **材料模型的时间相关性**: 岩石的损伤模型(如 `*MAT_JOHNSON_HOLMQUIST_CONCRETE` 或 `*MAT_HJC`)包含应变率效应参数,需根据实际实验数据标定,确保动态响应与时间相关性的准确性。 2. **流固耦合(FSI)设置**: 若使用 `*ICFD` 模块模拟水射流,需通过以下关键字同步流体与结构的时间步长: - `*ICFD_CONTROL_TIME`:定义流体求解的时间步长。 - `*FSI`:设置耦合界面的数据交换频率[^1]。 3. **输出时间间隔调整**: 通过 `*DATABASE_BINARY_D3PLOT` 或 `*DATABASE_EXTENT_BINARY` 控制结果输出的时间间隔,确保输出频率与实际观测需求匹配。 --- #### 四、时间缩放技术(Time Scaling) 对于某些长时程问题,可采用**时间缩放**方法加速计算,但需注意其对物理真实性的影响: 1. **速度缩放**: 增大射流速度 $v$,缩短实际时间 $t_{\text{real}} = L/v$($L$ 为特征长度),但需调整材料动态参数以保持无量纲数(如雷诺数、应力强度因子)一致。 2. **密度缩放**: 通过缩放材料密度 $\rho$ 间接增大时间步长 $\Delta t$,但可能引入惯性效应误差。 --- #### 五、验证与标定 1. **简化案例验证**: 对单次射流冲击(如定常速度冲击平板)进行模拟,对比模拟时间与实际高速摄像记录的破岩时间。 2. **参数敏感性分析**: 调整时间步长、材料应变率参数等,观察破岩形态与时间的关联性。 --- ### 关键 LS-DYNA 关键字配置示例 ```dyn *CONTROL_TIMESTEP 0.9 0.9 0 0 0 0 0 0 ! 时间步长缩放因子为0.9 *CONTROL_TERMINATION 1000.0 ! 总模拟时间为1000 ms(对应实际1秒) *ICFD_CONTROL_TIME 1.0E-3 1.0E-3 ! 流体时间步长为1 ms *MAT_JOHNSON_HOLMQUIST_CONCRETE 1 2.5 0.48 0.007 0.8 0.61 0.0012 0.04 ... ! HJC模型参数需根据实验标定 ``` --- ### 相关问题 1. **如何通过调整 LS-DYNA 的 CFL 条件来平衡计算效率与精度?** 2. **在流固耦合分析中,流体与结构时间步长不同步会导致什么问题?如何解决?** 3. **岩石材料模型中应变率效应对时间转换的影响如何量化?** 通过上述方法,可实现模拟时间与实际时间的有效转换,同时需结合实验数据不断优化模型参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值