离散周期信号傅里叶级数

连续信号通常是数学领域里的理论研究对象,而现实生活中我们遇到的信号往往是离散的,且计算机只能处理有限长度的离散信号。所以为了让傅里叶分析解决实际问题,有必要将其推广到离散信号领域。

连续周期信号和离散周期信号如上图所示:左图为连续周期正弦波\large x(t)=x(t+T),其中周期\large T=2\pi;右图为左图正弦波的周期离散采样,x[n]=x[x+N],其中周期N=10。

和连续周期信号傅里叶级数基于一样的猜想,离散周期信号傅里叶级数是想寻得一组不同振幅、不同频率和不同相位的正弦离散函数以表达某离散周期函数。即:

\large x[n]=C+\sum_{k=1}^{\infty}a_{k}sin(kw_{0}n)+\sum_{k=1}^{\infty}b_{k}cos(kw_{0}n)

其中\large w_{0}=\frac{2\pi}{N}。根据欧拉公式\large e^{ix}=cos(x)+isin(x)得:

\large \left\{\begin{matrix} cos(x)=\frac{e^{ix}+e^{-ix}}{2}\\ sin(x)=\frac{e^{ix}-e^{-ix}}{2i}\\ \end{matrix}\right.

因此,上式可推导为:

\large x[n]=C+\sum_{k=1}^{\infty}(a_{k}\frac{e^{ikw_{0}n}-e^{-ikw_{0}n}}{2i}+b_{k}\frac{e^{ikw_{0}n}+e^{-ikw_{0}n}}{2})\\ =C+\sum_{k=1}^{\infty}(\frac{ia_{k}-b_{k}}{2}e^{ikw_{0}n}+\frac{-ia_{k}-b_{k}}{2}e^{-ikw_{0}n})

\large A_{k}=\frac{ia_{k}-b_{k}}{2}\large B_{k}=\frac{-ia_{k}-b_{k}}{2},得到x[n]的傅里叶级数复数形式的表达式:

\large x[n]=Ce^{i0w_{0}n}+\sum_{k=1}^{\infty}A_{k}e^{ikw_{0}n}+\sum_{k=1}^{\infty}B_{k}e^{-ikw_{0}n}=\sum_{k=-\infty}^{\infty}D_{k}e^{ikw_{0}n}

我们接着观察该级数中的单项\large e^{ikw_{0}n}

\large \phi _{k}[n]=e^{ikw_{0}n}=e^{ik\frac{2\pi}{N}n},n=0,\pm 1,\pm 2,...

先说结论:\large \phi_{k}[n]=\phi_{k+r}N[n],其中\large k=0,\pm1,\pm2,...\large r=0,1,2,...、N为离散信号x[n]的变化周期。证明过程如下:

\large \phi_{k+r}N[n]=e^{i(k+rN)\frac{2\pi}{N}n}=e^{ik\frac{2\pi}{N}n}e^{ir2\pi n}=e^{ik\frac{2\pi}{N}n}(e^{i2\pi})^{rn}\\ =e^{ik\frac{2\pi}{N}n}(cos(2\pi)+isin(2\pi))^{rn}\\ =e^{ik\frac{2\pi}{N}n}(1)^{rn}\\ =e^{ik\frac{2\pi}{N}n}=\phi_{k}[n]

因此,得到离散周期信号x[n]的傅里叶级数如下:

\large x[n]=\sum_{k=<N>}X_{k}e^{ik\frac{2\pi}{N}n}

 

给出:

\large \sum_{n=<N>}e^{ik\frac{2\pi}{N}n}=\left\{\begin{matrix} N,k=0,\pm N,\pm 2N,...\\ 0,otherwise\\ \end{matrix}\right.

\large S=\sum_{n=<N>}e^{ik\frac{2\pi}{N}n},过程如下:

\large S(1^{\frac{k}{n}}-1)=e^{ik\frac{2\pi}{N}}S-S=e^{ik\frac{2\pi}{N}N}-e^{ik\frac{2\pi}{N}0}=e^{ik2\pi}-1=1^k-1=0

由上式可知,当\large k\neq 0,\pm N,\pm 2N,...时:

\large (1^{\frac{k}{N}}-1)\neq 0\small S=\sum_{n=<N>}e^{ik\frac{2\pi}{N}n}=0

\large k=0,\pm N,\pm 2N,...时:

S=\sum_{n=<N>}e^{ik\frac{2\pi}{N}n}=\sum_{n=<N>}(e^{i2\pi})^{\frac{k}{N}n}=\sum_{n=<N>}(1)^{rn}=N,r=0,\pm 1,\pm 2,...

现在,对离散周期信号x[n]每时刻的信号求和,并乘以\small e^{-ir\frac{2\pi}{N}}得:

\small \sum_{n=<N>}x[n]e^{-ir\frac{2\pi}{N}n}=\sum_{n=<N>}\sum_{k=<N>}X_{k}e^{i(k-r)\frac{2\pi}{N}n}=\sum_{k=<N>}X_{k}\sum_{n=<N>}e^{i(k-r)\frac{2\pi}{N}n}

由上面给出的公式可以得到,当k-r=0时,\small \sum_{n=<N>}e^{i(k-r)\frac{2\pi}{N}n}=N;当\small k-r\neq 0时,\small \sum_{n=<N>}e^{i(k-r)\frac{2\pi}{N}n}=0。所以:

\small \sum_{n=<N>}x[n]e^{-ir\frac{2\pi}{N}}=\sum_{k=<N>}X_{k}\sum_{n=<N>}e^{i(k-r)\frac{2\pi}{N}n}=X_{r}N

即:

\small X_{r}=\frac{1}{N}\sum_{n=<N>}x[n]e^{-ir\frac{2\pi}{N}n}

至此,我们已经得到离散周期信号x[n]的傅里叶级数(如下):

\small x[n]=\sum_{k=<N>}X_{k}e^{ik\frac{2\pi}{N}n}

其中,\small X_{k}=\frac{1}{N}\sum_{n=N}x[n]e^{-ik\frac{2\pi}{N}n}

 

https://blog.csdn.net/u012841922/article/details/84582198

 

 

 

  • 1
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值