轮廓跟踪
形状复杂的目标难以用简单的几何形状来表示。基于轮廓的方法提供了较为准确的形状描述。这类方法的主要思想是用先前帧建立的目标模型找到当前帧的目标区域。其中目标模型可以是颜色直方图、目标边缘或者轮廓。基于轮廓的跟踪方法可以分为两类:形状匹配方法和轮廓跟踪方法。前者在当前帧中搜索目标性状,后者则通过状态空间模型或直接的能量最小化函数推演初始轮廓在当前帧中的新位置。
1 形状匹配方法
这种方法类似于基于模板的跟踪,在当前帧中搜索目标的轮廓和相关模型。
Huttenlocher et al.[1993] - 用基于边缘的表达方式进行形状匹配,用Hausdorff距离进行匹配测量。
Li et al. [2001] - 也提出了用Hausdorff距离的形状匹配方法。
另一种匹配形状的方法是在连续两帧中寻找关联轮廓,建立轮廓关联,或称为轮廓匹配,是类似于点匹配的一种方法。这种方法使用了目标的外观特征。
-轮廓检测通常由背景减除实现。
-轮廓被提取后,匹配由计算目标模型和每个轮廓之间的距离实现。
-目标模型可以使密度函数(颜色或边缘直方图)、轮廓边界、目标边缘或这些信息的组合
Kang et al.[2004] - 使用了颜色和边缘直方图作为目标模型
Haritaoglu et al. [2000 - 使用了轮廓内部得到的边缘信息建模目标外观
用光流法提取进行轮廓匹配也是一种思路。如Sato and Aggarwal [2004] - 用Hough变换计算轮廓轨迹
2 轮廓跟踪
这种方法从前一帧的轮廓位置开始轮廓推演,得到当前帧的轮廓。前提是当前帧和前一帧的目标轮廓有所交叠。这类方法又有两种不同的实现方式,用状态空间模型建模轮廓的形状和运动,或