QT+opencv学习笔记(4)——边缘检测、轮廓提取及轮廓跟踪

本文介绍了在win10环境下,使用QT5.8和OpenCV3.2进行图像处理,包括图像的边缘检测(Canny、Sobel、Laplacian算子)、轮廓提取和轮廓跟踪的详细步骤与代码实现,展示了各种方法的处理结果。
摘要由CSDN通过智能技术生成

开发环境为:win10+QT5.8+opencv3.2

      数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域十分重要的基础,图像分析和理解的第一步往往就是边缘检测。轮廓跟踪是获取图像的外部轮廓特征,为图像的形状分析做准备。本文主要实现图像边缘检测、轮廓提取、轮廓跟踪。

一、读取图像

         读取图像QT+opencv学习笔记(1)——图像点运算,这里不再赘述。

         读取结果如下图

二、边缘检测

       边缘是指图像局部强度变化最显著的部分。边缘主要存在与目标与目标、目标与背景、区域与区域之间。图像强度的不连续性可分为:阶跃不连续,即图像强度在不连续处的两边的像素灰度值有显著的差异;线条不连续,即图像强度从一个值变化到另一个值,保持一较小行程后又回到原来的值。

    边缘检测算子检查每个像素的邻域并对灰度变换率进行量化,也包括方向的确定。大多数使用基于方向倒数掩模求卷积的方法。

    下面介绍几种常用的边缘检测算子。

Canny算子

       Canny算子运用比较广泛。是在Sobel算子的基础上改进的。

       Canny算子的步骤是:

              1.先进行滤波降噪。

              2.计算梯度幅值和方向(进行Sobel算子计算)。

              3.非极大值抑制。

              4.滞后阈值。

        Canny边缘检测可通过Canny()函数来实现。Canny()函数的定义如下:

//推荐高低阈值比例介于2:1与3:1之间
void Canny(InputArray image,     //8位单通道输入图像
           OutputArray edges,    //输出图像,和输入图像的尺寸类型一致
           double threshold1,    //滞后阈值低阈值(用于边缘连接)
           double threshold2,    //滞后阈值高阈值(控制边缘初始段)
           int apertureSize=3,   //表示Sobel算子孔径大小,默认为3
           bool L2gradient=false //计算图像梯度幅值的标识
        );

        Canny边缘检测主要代码如下:

//Canny边缘检测
Canny(grayImg, edgeImg, 30, 80);

        Canny边缘检测处理结果如下:

                                                                                                              

Qt + OpenCV中提取轮廓通常用于图像处理和计算机视觉应用,比如目标检测、边缘检测等。以下是基本步骤: 1. **引入库**:首先,在Qt项目中集成OpenCV库。如果你使用的是C++,可以在.pro文件中添加`QT += opengl widgets`,并链接OpenCV静态库。 2. **读取和预处理图像**:使用`cv::imread()`函数加载图片,然后可能需要对图像进行灰度化或滤波操作,以便于后续的轮廓识别。 ```cpp cv::Mat srcImage = cv::imread("image.jpg", cv::IMREAD_COLOR); cv::Mat grayImage; cv::cvtColor(srcImage, grayImage, cv::COLOR_BGR2GRAY); ``` 3. **二值化**:将灰度图像转换成黑白二值图像,以便更容易地找到边缘和轮廓。 ```cpp cv::threshold(grayImage, binaryImage, thresholdValue, 255, cv::THRESH_BINARY_INV); ``` 4. **边缘检测**:如使用Canny算子增强边缘检测效果。 ```cpp cv::Canny(binaryImage, edges, lowThreshold, highThreshold); ``` 5. **寻找轮廓**:使用`cv::findContours()`函数从二值化的图像中查找轮廓。它会返回轮廓矩阵(contours)和轮廓的层次结构(hierarchy)。 ```cpp std::vector<std::vector<cv::Point>> contours, hierarchy; cv::findContours(edges, contours, hierarchy, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE); ``` 6. **遍历并显示轮廓**:对于每个轮廓,可以提取其边界框信息,绘制出来或进一步分析。 ```cpp for (const auto& contour : contours) { cv::Rect boundingRect = cv::boundingRect(contour); // 对轮廓进行其他操作... } ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值