点跟踪
跟踪问题可以用帧与帧之间检测到的目标点之间的关系来表达。点之间的关联问题的复杂性特别表现在遮挡、误检测、目标进出画面等情况。
总的来说,点关联的方法可分为两大类:确定性方法和统计性方法。前者通常用定性的运动限制方法,后者用目标检测和不确定性的建模来建立关联。
Deterministic Methods for Correspondence.
确定性的方法定义了在一系列约束条件下,关联t时刻和t-1时刻图像帧中每个目标的成本。关联成本的最小化规划为一个优化组合问题。可以用最优分配方法求解,如匈牙利算法,贪婪搜索算法。关联成本的限制条件可以使以下条件的组合定义,这些条件同时适用于确定性和统计性的方法:
Proximity - 假设目标位置在两帧之间没有明显变化
Maximum velocity - 定义了目标速度的上限,即限制了目标周围可能的圆形关联邻域
Small velocity change - 家丁目标的运动方向和速度没有明显变化
Common motion - 假定在一个较小邻域内的目标们的速度相似
Rigidity - 假设目标在3D世界中是刚性的,即真实目标上的两个点之间的距离保持不变
Proximal uniformity - 是Proximity 和Common motion的组合约束
这些方法中较新较完善的是Veenman et al. [2001]和Shafique and Shah [2003]的算法。
Statistical Methods for Correspondence.
统计性方法在目标状态估计中考虑了观测噪声和模型不确定性,用状态空间方法建模速度、位置、加速度等目标属性。
目标信息通常由一系列的状态表达:Xt: