初九-目标跟踪-点跟踪

点跟踪涉及帧间目标点关联,处理遮挡、误检等问题。方法分为确定性和统计性两类。确定性方法如匈牙利算法、贪婪搜索,通过约束条件最小化优化问题。统计性方法利用贝叶斯滤波处理噪声和不确定性,包括卡尔曼滤波、扩展卡尔曼滤波和粒子滤波。多目标跟踪中,JPDAF和MHT是常用技术。
摘要由CSDN通过智能技术生成

点跟踪

跟踪问题可以用帧与帧之间检测到的目标点之间的关系来表达。点之间的关联问题的复杂性特别表现在遮挡、误检测、目标进出画面等情况。

总的来说,点关联的方法可分为两大类:确定性方法和统计性方法。前者通常用定性的运动限制方法,后者用目标检测和不确定性的建模来建立关联。

 

Deterministic Methods for Correspondence.

      确定性的方法定义了在一系列约束条件下,关联t时刻和t-1时刻图像帧中每个目标的成本。关联成本的最小化规划为一个优化组合问题。可以用最优分配方法求解,如匈牙利算法,贪婪搜索算法。关联成本的限制条件可以使以下条件的组合定义,这些条件同时适用于确定性和统计性的方法:

  Proximity - 假设目标位置在两帧之间没有明显变化

  Maximum velocity - 定义了目标速度的上限,即限制了目标周围可能的圆形关联邻域

  Small velocity change - 家丁目标的运动方向和速度没有明显变化

  Common motion - 假定在一个较小邻域内的目标们的速度相似

  Rigidity - 假设目标在3D世界中是刚性的,即真实目标上的两个点之间的距离保持不变

  Proximal uniformity - 是Proximity 和Common motion的组合约束

这些方法中较新较完善的是Veenman et al. [2001]和Shafique and Shah [2003]的算法。

 

Statistical Methods for Correspondence.

统计性方法在目标状态估计中考虑了观测噪声和模型不确定性,用状态空间方法建模速度、位置、加速度等目标属性。

  目标信息通常由一系列的状态表达:Xt

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值