
深度神经网络
文章平均质量分 84
Aitrainee
AI算法工程师 | AIGC时代,立志成为超级个体。
知音难求,自我修炼亦艰。
吾生也有涯,而知也无涯。
公众号:AI进修生。
展开
-
了解 YOLOv5 中的 NMS 多标签检测参数设置
NMS 多标签检测”(multi_label = False)是一个关于 YOLOv5 模型推理设置的参数,具体来说,它控制非最大抑制(NMS)的行为。要理解这个设置,我们首先需要了解 NMS 和它在目标检测中的作用。原创 2024-01-17 13:24:13 · 2435 阅读 · 0 评论 -
NeRF算法模型简析:从理论到实践的轻度解析以及如何编辑和微调
修改最后的全连接层,以适应新的类别数。原创 2024-01-13 21:58:18 · 1664 阅读 · 0 评论 -
识别并处理数据集中不配对图像和标签文件
对于任何从事与图像相关的机器学习项目的人来说,该脚本都是一个非常宝贵的工具。通过自动化识别和管理未配对文件的过程,不仅可以节省时间,还有助于保持数据集的完整性和一致性,确保您的机器学习模型接受完整且准确的数据训练。然后,您指定将移动未配对的文件的目标目录。它比较这些列表以查找任何未配对的文件 - 没有相应文本文件的图像,反之亦然。此步骤就像从报告中删除不完整或不相关的页面,以确保仅保留完整且相关的信息。最后,脚本提供了未配对的图像和文本文件的列表。如果未配对文件的目标目录不存在,脚本将创建它。原创 2024-01-03 20:42:19 · 645 阅读 · 0 评论 -
深度学习中的自动化标签转换:对数据集所有标签做映射转换
您需要指定标签目录的路径。然后,该脚本会自动在同一目录中创建备份 zip 文件路径,并带有时间戳以确保唯一性。原创 2024-01-01 12:22:14 · 1093 阅读 · 0 评论 -
使用 Python进行数据集分割:简洁完美的数据集划分脚本
在机器学习的世界中,正确准备数据集与您选择的算法一样重要。将数据集划分为训练集、验证集和测试集的过程是构建稳健模型的基本步骤。本文深入研究了专门为此目的设计的 Python 脚本,展示了如何有效地分割机器学习项目的数据集,特别是 YOLOv5 PyTorch 模型。原创 2024-01-01 12:19:07 · 3001 阅读 · 0 评论 -
线性回归与神经网络的联系与区别:理解线性梯度反向传播
线性回归模型可以看作是一种简单的神经网络模型。虽然它没有像深度神经网络那样多层结构,但它依然包含了输入层、输出层和可调参数(权重和偏置项),并且也需要使用梯度下降算法来训练模型。在线性回归模型中,我们假设输入和输出之间存在线性关系,即输出是输入的加权和加上一个偏置项。我们通过训练来找到最优的权重和偏置项,使得模型的预测值和真实值之间的误差最小。在神经网络中,我们也需要通过训练来找到最优的权重和偏置项,以使神经网络的性能得到提高。原创 2023-12-24 23:01:38 · 3126 阅读 · 0 评论 -
线性回归模型:简化版的神经网络
线性回归模型通常被视为神经网络的最简形式,尽管它不具备深度神经网络的复杂多层结构。这种模型包含输入层、输出层和可调参数(权重和偏置项),其基本原理和训练过程与神经网络相似。在线性回归中,输出被假设为输入的加权和加上一个偏置项,这与神经网络中的神经元工作原理类似。接下来,我们将深入探讨线性回归模型的线性梯度反向传播过程以及其与神经网络的相似性和差异。原创 2023-12-24 22:47:27 · 1303 阅读 · 0 评论 -
截至2023年,深度学习神经网络理论:实践走在了理论的前面,因为人类没法完全理解神经网络,我们只能优化神经网络这种黑箱模型端到端得输出,但它还是一个黑箱,不可解释性还有待解决
虽然当前深度学习模型的可解释性依然是一个挑战,但这并不意味着未来无法解决。随着理论研究的深入和技术的发展,我们有望逐步提高神经网络的可解释性,使其决策过程更加透明和可靠。原创 2023-12-24 22:12:10 · 667 阅读 · 0 评论 -
自构NN经验·神经网络设计Gpts·Chatgpt大模型prompt
4、定制辅导:你是一位长时间伴随我达成上述目标的导师,所以你要自己学习,回顾我们所有的对话,根据我的所有提问,推测我在神经网络学习与实践方面的水平,然后你以后的回答做出相应的调整或者优化网络。2、根据实际问题,需要调整神经网络哪里会有比较好的效果,我们着重在自己构建网络、修改别人的网络、利用别人的网络/经典的网络解决具体算法应用问题。3、我会上传一段之前与ChatGPT大模型的对话内容,其中包含了我某些方面的需求,你可以初步知道我总需求中的小需求之一。7、根据我上面的需求,你可以建议我还可以提哪些需求。原创 2023-12-20 12:29:10 · 506 阅读 · 0 评论