算法——图论:路径,回溯

. - 力扣(LeetCode)

给你一个有 n 个节点的 有向无环图(DAG),请你找出所有从节点 0 到节点 n-1 的路径并输出(不要求按特定顺序

 graph[i] 是一个从节点 i 可以访问的所有节点的列表(即从节点 i 到节点 graph[i][j]存在一条有向边)。

即给定邻接表求0到n-1的所有路径。

自己的代码:dfs,来到当前节点先记录其路径。如果发现当前节点为最后节点则直接返回。否则,对当前节点的每个邻接节点不断dfs。dfs完成后,将当前节点从路径中删除并返回。

注意:此题无需判断节点是否访问过,因为本题是有向图,对于某个节点,指向该节点可能有好几个节点,所以如果该节点只被访问一次无法得到所有路径。

class Solution {
public:
    vector<vector<int>>res;

    vector<vector<int>> allPathsSourceTarget(vector<vector<int>>& graph) {
        vector<int> visited(graph.size(),0),path;
        dfs(graph,0,path,visited);
        return res;
    }

    void dfs(vector<vector<int>>& graph,int cur,vector<int> &path,vector<int>&visited)
    {
        path.push_back(cur);
        if(cur==graph.size()-1)
        {
            res.push_back(path);
            path.pop_back();
            return;
        }
        for(int i=0;i<graph[cur].size();i++)
        {
            //if(!visited[graph[cur][i]])
            dfs(graph,graph[cur][i],path,visited);
        }
        //visited[cur]=1;
        path.pop_back();
    }
};

官方题解:

我们可以使用深度优先搜索的方式求出所有可能的路径。具体地,我们从 0 号点出发,使用栈记录路径上的点。每次我们遍历到点 n−1,就将栈中记录的路径加入到答案中。

特别地,因为本题中的图为有向无环图(DAG\text{DAG}DAG),搜索过程中不会反复遍历同一个点,因此我们无需判断当前点是否遍历过。

class Solution {
public:
    vector<vector<int>> ans;
    vector<int> stk;

    void dfs(vector<vector<int>>& graph, int x, int n) {
        if (x == n) {
            ans.push_back(stk);
            return;
        }
        for (auto& y : graph[x]) {
            stk.push_back(y);
            dfs(graph, y, n);
            stk.pop_back();
        }
    }

    vector<vector<int>> allPathsSourceTarget(vector<vector<int>>& graph) {
        stk.push_back(0);
        dfs(graph, 0, graph.size() - 1);
        return ans;
    }
};

整体思路差不多。

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
算法与数据结构它们分别涵盖了以下主要内容: 数据结构(Data Structures): 逻辑结构:描述数据元素之间的逻辑关系,如线性结构(如数组、链表)、树形结构(如二叉树、堆、B树)、图结构(有向图、无向图等)以及集合和队列等抽象数据类型。 存储结构(物理结构):描述数据在计算机中如何具体存储。例如,数组的连续存储,链表的动态分配节点,树和图的邻接矩阵或邻接表表示等。 基本操作:针对每种数据结构,定义了一系列基本的操作,包括但不限于插入、删除、查找、更新、遍历等,并分析这些操作的时间复杂度和空间复杂度。 算法算法设计:研究如何将解决问题的步骤形式化为一系列指令,使得计算机可以执行以求解问题。 算法特性:包括输入、输出、有穷性、确定性和可行性。即一个有效的算法必须能在有限步骤内结束,并且对于给定的输入产生唯一的确定输出。 算法分类:排序算法(如冒泡排序、快速排序、归并排序),查找算法(如顺序查找、二分查找、哈希查找),图论算法(如Dijkstra最短路径算法、Floyd-Warshall算法、Prim最小生成树算法),动态规划,贪心算法回溯法,分支限界法等。 算法分析:通过数学方法分析算法的时间复杂度(运行时间随数据规模增长的速度)和空间复杂度(所需内存大小)来评估其效率。 学习算法与数据结构不仅有助于理解程序的内部工作原理,更能帮助开发人员编写出高效、稳定和易于维护的软件系统。
逻辑结构:描述数据元素之间的逻辑关系,如线性结构(如数组、链表)、树形结构(如二叉树、堆、B树)、图结构(有向图、无向图等)以及集合和队列等抽象数据类型。 存储结构(物理结构):描述数据在计算机中如何具体存储。例如,数组的连续存储,链表的动态分配节点,树和图的邻接矩阵或邻接表表示等。 基本操作:针对每种数据结构,定义了一系列基本的操作,包括但不限于插入、删除、查找、更新、遍历等,并分析这些操作的时间复杂度和空间复杂度。 算法算法设计:研究如何将解决问题的步骤形式化为一系列指令,使得计算机可以执行以求解问题。 算法特性:包括输入、输出、有穷性、确定性和可行性。即一个有效的算法必须能在有限步骤内结束,并且对于给定的输入产生唯一的确定输出。 算法分类:排序算法(如冒泡排序、快速排序、归并排序),查找算法(如顺序查找、二分查找、哈希查找),图论算法(如Dijkstra最短路径算法、Floyd-Warshall算法、Prim最小生成树算法),动态规划,贪心算法回溯法,分支限界法等。 算法分析:通过数学方法分析算法的时间复杂度(运行时间随数据规模增长的速度)和空间复杂度(所需内存大小)来评估其效率。 学习算法与数据结构不仅有助于理解程序的内部工作原理,更能帮助开发人员编写出高效、稳定和易于维护的软件系统。
算法与数据结构它们分别涵盖了以下主要内容: 数据结构(Data Structures): 逻辑结构:描述数据元素之间的逻辑关系,如线性结构(如数组、链表)、树形结构(如二叉树、堆、B树)、图结构(有向图、无向图等)以及集合和队列等抽象数据类型。 存储结构(物理结构):描述数据在计算机中如何具体存储。例如,数组的连续存储,链表的动态分配节点,树和图的邻接矩阵或邻接表表示等。 基本操作:针对每种数据结构,定义了一系列基本的操作,包括但不限于插入、删除、查找、更新、遍历等,并分析这些操作的时间复杂度和空间复杂度。 算法算法设计:研究如何将解决问题的步骤形式化为一系列指令,使得计算机可以执行以求解问题。 算法特性:包括输入、输出、有穷性、确定性和可行性。即一个有效的算法必须能在有限步骤内结束,并且对于给定的输入产生唯一的确定输出。 算法分类:排序算法(如冒泡排序、快速排序、归并排序),查找算法(如顺序查找、二分查找、哈希查找),图论算法(如Dijkstra最短路径算法、Floyd-Warshall算法、Prim最小生成树算法),动态规划,贪心算法回溯法,分支限界法等。 算法分析:通过数学方法分析算法的时间复杂度(运行时间随数据规模增长的速度)和空间复杂度(所需内存大小)来评估其效率。 学习算法与数据结构不仅有助于理解程序的内部工作原理,更能帮助开发人员编写出高效、稳定和易于维护的软件系统。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值