人体关键点检测数据集

目录

2D

COCO

MPII(MPII Human Pose Dataset)

LSP(Leeds Sports Pose Dataset)-- Sport

FLIC/FLIC-full(Frames Labeled In Cinema)-- Hollywood movies(CVPR2013)

FLIC-plus Dataset(NIPS2014)

AI Challenger

PoseTrack

3D

human3.6M

HumanEva

MPI-INF-3DHP

ALL

Unite The People(Closing the Loop Between 3D and 2D Human Representations) -- Sport


2D

COCO

https://cocodataset.org/#download

目前COCO keypoint track是人体关键点检测的权威公开比赛之一。

COCO数据集中把人体关键点表示为17个关节,分别是鼻子,左右眼,左右耳,左右肩,左右肘,左右腕,左右臀,左右膝,左右脚踝。而人体关键点检测的任务就是从输入的图片中检测到人体及对应的关键点位置。最多标注全身的17个关键点,平均一幅图像2个人,最多有13个人。

MSCOCO样本数多于30W,多人关键点检测的主要数据集,主流数据集;

 

MPII(MPII Human Pose Dataset)

http://human-pose.mpi-inf.mpg.de/#results

单人/多人人体关键点检测数据集,16个关键点坐标及其是否可见的信息,样本数25K,是单人人体关键点检测的主要数据集。标注数据的格式:使用mat的struct格式,对于人体关键点检测有用的数据如下:行人框:使用center和scale标注,人体尺度关于200像素高度,也就是除过了200。

1、2数据的预处理,可以参考

1>https://github.com/microsoft/human-pose-estimation.pytorch/tree/master/lib/dataset

2>https://arxiv.org/abs/1804.06208

3>https://github.com/leoxiaobin/deep-high-resolution-net.pytorch

 

LSP(Leeds Sports Pose Dataset)-- Sport

https://sam.johnson.io/research/lsp.html

单人人体关键点检测数据集,关键点个数为14,样本数2K,在目前的研究中作为第二数据集使用。

FLIC/FLIC-full(Frames Labeled In Cinema)-- Hollywood movies(CVPR2013)

https://bensapp.github.io/flic-dataset.html

单人人体关键点检测数据集,关键点个数为9,样本数2W,在目前的研究中作为第二数据集使用。

 

FLIC-plus Dataset(NIPS2014)

https://jonathantompson.github.io/flic_plus.htm

FLIC-full的子集

AI Challenger

多人人体关键点检测数据集,关键点个数为14,样本数约38W,竞赛数据集;

PoseTrack

最新的关于人体骨骼关键点的数据集,多人人体关键点跟踪数据集,包含单帧关键点检测、多帧关键点检测、多人关键点跟踪三个人物,多于500个视频序列,帧数超过20K,关键点个数为15。

3D

human3.6M

http://vision.imar.ro/human3.6m/description.php

是3D人体姿势估计的最大数据集,由360万个姿势和相应的视频帧组成,这些视频帧包含11位演员从4个摄像机视角执行15项日常活动的过程。数据集庞大将近100G。

HumanEva

http://humaneva.is.tue.mpg.de/

The HumanEva-I dataset contains 7 calibrated video sequences (4 grayscale and 3 color) that are synchronized with 3D body poses obtained from a motion capture system. The database contains 4 subjects performing a 6 common actions (e.g. walking, jogging, gesturing, etc.). The error metrics for computing error in 2D and 3D pose are provided to participants. The dataset contains training, validation and testing (with withheld ground truth) sets.

MPI-INF-3DHP

http://gvv.mpi-inf.mpg.de/3dhp-dataset/

ALL

Unite The People(Closing the Loop Between 3D and 2D Human Representations) -- Sport

http://files.is.tuebingen.mpg.de/classner/up/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值