蚁群算法(Ant Colony Algorithm, ACA)简介及其MATLAB实现

本文介绍了蚁群算法(Ant Colony Algorithm, ACA)的数学原理、算法步骤和特点,强调其正反馈机制和分布式计算优势。此外,文章讨论了启发式算法的共性,并以旅行商问题(TSP)为例,展示了如何使用MATLAB实现ACA解决优化问题。" 83044835,6652005,ActiveMQ 高级特性:Message Dispatch与Async Sends解析,"['消息队列', 'ActiveMQ', '分发策略', '异步发送']
摘要由CSDN通过智能技术生成

目录

算法概述

ACA算法的数学原理

算法步骤

ACA算法特点

补充:启发式算法

旅行商问题(TSP)

ACA的MATLAB实现


算法概述

模拟蚂蚁觅食行为设计的算法。讲蚂蚁群觅食的特点抽象出来转化成数学描述。

• 蚁群算法(Ant Colony Algorithm, ACA)由Marco Dorigo于1992年在他的博士论文中首次提出。

• 蚂蚁在寻找食物源时,会在其经过的路径上释放一种信息素,并能够感知其它蚂蚁释放的信息素。信息素浓度的大小表征路径的远近,信息素浓度越高,表示对应的路径距离越短

• 通常,蚂蚁会以较大的概率优先选择信息素浓度较高的路径,并释放 一定量的信息素,以增强该条路径上的信息素浓度,这样,会形成一个正反馈。最终,蚂蚁能够找到一条从巢穴到食物源的最佳路径,即距离 最短。

• 生物学家同时发现,路径上的信息素浓度会随着时间的推进而逐渐衰减

• 将蚁群算法应用于解决优化问题,其基本思路为:用蚂蚁的行走路径表示待优化问题的可行解,整个蚂蚁群体的所有路径构成待优化问题的解空间。路径较短的蚂蚁释放的信息素量较多,随着时间的推进,较短 的路径上累积的信息素浓度逐渐增高,选择该路径的蚂蚁个数也愈来愈多。最终,整个蚂蚁会在正反馈的作用下集中到最佳的路径上,此时对应的便是待优化问题的最优解。

类比GA(遗传算法)的交叉、选择、变异,PSO(粒子群算法)的个体、群体极值优化,蚁群算法也有自己的优化策略:正反馈的信息机制、信息素浓度的更新、蚂蚁对能够访问的路径的筛选。

ACA算法的数学原理

关于蚁群算法中释放信息素的特点,定义了三种模型:

第一种模型假设信息素总量一定。信息素浓度和经过路径的长度成反比。

第二种模型中不使用经过的总路径,而仅仅使用相邻城市的路径长度。

第三种模型更简单,不管距离长短,释放的信息素都一样。

本文下面设计的MATLAB程序,以第一种模型为例。

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值