本地部署开源的大语言模型(LLM) API 管理工具 One API 并实现外部访问

One API 是一款开源的大语言模型(LLM)API 管理工具,它提供了一个统一的接口,能够聚合不同的大语言模型 API(如 OpenAI、Hugging Face、文心一言等),使得开发者可以使用统一的请求格式来调用不同模型的服务,无需针对每个模型单独编写调用代码,从而简化了开发流程,提高了开发效率。

第一步,本地部署安装 One API

1,打开 Linux 终端,确保 Docker 已经安装好了。首先拉取 One API 镜像。

docker pull justsong/one-api

2,创建部署目录。

mkdir -p /data/oneapi/data && cd /data/oneapi/

3,用 vim docker-compose.yaml 创建 docker-compose.yaml 文件,把下面代码复制进去并保存。

version: '3'  
services:  
  one-api:  
    image: justsong/one-api 
    container_name: oneapi  
    restart: always  
    ports:  
      - "3000:3000"    #设置端口映射,可自定义
    environment:  
      - TZ=Asia/Shanghai  
    volumes:  
      - /data/oneapi/data:/data

4,启动容器。

docker compose up -d

5,在浏览器输入 http://本地IP:3000,就可以看到 One API  界面了。点击右上角登录。

6,在登录界面输入用户名和密码,初始用户名:root,密码:123456 ,登录后记得要更改密码。

7,更改密码。

8,添加新的渠道。

第二步,外网访问本地的 One API

安装路由侠内网穿透。

1,当前未提供网页管理,需要先在任意一台 Windows 机器安装路由侠 Windows 版本,用作跨机器管理。

2,在路由侠客户端主界面,进入“设备管理”,点击右下角的“添加设备”,此时可查看到对应的安装码,此安装码用于将设备添加到对应账号下,可选中后复制。

3,直接下载后导入:

wget https://dl.luyouxia.com:8443/v2/lyx-docker-x86_64.tar
docker load -i lyx-docker-x86_64.tar

4,然后使用该镜像启动容器

docker run --name lyx -it --restart=always --net=host -e code=这里填写安装码 luyouxia/lyx

5,此时,需要等待下载和安装的过程,如果一切正常,最终可以看到一些输出,并且可以看到如下提示:

[Device] Logged in. Token: ....

这就表示安装成功了。

当前 Linux 终端这边,如果是使用的上面的命令,Docker 是运行在前台,此时可以按住 Ctrl+C ,退出路由侠,容器也将退出。现在可以使用以下命令将其放入后台持续运行:

docker start lyx

注意如果容器删除,重新 docker run, 将创建为新的设备。

需要注意的是,因为容器参数已经添加了 --restart=always,这样开机就会自动启动,不需要再手动启动路由侠了。

6,现在回到 Windows 这边设备列表,点击右上角的×返回主界面,再次进入,就可以找到这个设备,可以修改名称。

7,回到主界面,点击【内网映射】。

8,注意右上角的设备名称下拉框,这里选中刚刚添加的设备名称,此时在这个界面上添加的映射,就属于刚刚这个设备。添加或修改一般需要等待30秒,容器中的路由侠进程就会更新并加载。切换好设备后,点击【添加映射】。

9,选择【原生端口】。

10,在内网端口里填写端口 3000 后点击【创建】按钮,如下图。

11,创建好后,就可以看到一条映射的公网地址,鼠标右键点击【复制地址】。

12,在外网电脑上,打开浏览器,在地址栏输入从路由侠生成的外网地址,就可以看到内网部署的 One API 界面了。

### 大型模型在本地环境中的部署优势 #### 资源控制与数据隐私保护 在本地环境中部署大型模型能够提供更高的资源控制能力,企业可以根据自身的硬件条件调整计算资源分配。此外,在某些行业尤其是金融、医疗等领域,出于对敏感数据的安全性和隐私性的考虑,将处理过程保持在内部网络中可以有效防止外部访问带来的风险[^1]。 #### 定制化服务支持 对于特定应用场景下的需求定制更加容易实现。当企业在其私有云或数据中心内运行这些复杂的算法时,可以直接针对业务特点进行参数调优和服务功能拓展,而无需依赖第三方平台可能存在的接口限制或其他约束因素。 ```python import tensorflow as tf from transformers import TFBertModel, BertTokenizer tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = TFBertModel.from_pretrained('bert-base-chinese') def preprocess(text): inputs = tokenizer.encode_plus( text, add_special_tokens=True, max_length=512, padding='max_length', truncation=True, return_attention_mask=True, return_tensors="tf" ) return inputs['input_ids'], inputs['attention_mask'] text = "这是一个测试例子" input_ids, attention_masks = preprocess(text) outputs = model([input_ids, attention_masks]) print(outputs) ``` 此代码片段展示了如何在一个受控环境下加载预训练的语言模型对其进行微调以适应具体任务的需求,这正是利用本地部署灵活性的一个实例。 --- ### 大型模型在本地环境中的部署劣势 #### 成本高昂且维护复杂度高 构建适合大规模机器学习工作的基础设施不仅涉及到前期采购高性能GPU集群的成本投入,还包括后期持续运维的人力物力开销。特别是随着模型规模不断扩大和技术更新迭代加快的趋势下,维持这样一个高效稳定的系统面临着巨大挑战。 #### 技术门槛较高 成功实施此类项目往往需要具备深厚的技术背景知识以及跨学科团队协作的能力。从模型选择到最终上线过程中涉及多个环节的专业技能要求极高,这对于许多中小企业来说可能是难以逾越的障碍。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值