封面图片由通义万相生成
毫无疑问的明星库,几乎每一个大模型在发布时都会提供该库的推演支持。Transformer原本是由Google的工程师提出的一种深度学习模型结构的名字,该结构使用了注意力机制,有效的提升了模型表现。HuggingFace将自己开发的注意力机制库命名为Transformers,并逐渐在大语言模型开发中流行开来。
①人工智能/大模型学习路线
②AI产品经理入门指南
③大模型方向必读书籍PDF版
④超详细海量大模型实战项目
⑤LLM大模型系统学习教程
⑥640套-AI大模型报告合集
⑦从0-1入门大模型教程视频
⑧AGI大模型技术公开课名额
Transformers支持Rust。将以下内容添加至Cargo.toml文件
candle-transformers = { git = "https://github.com/huggingface/candle.git", version = "0.5.0" }
官网:https://github.com/huggingface/transformers
llama.cpp
这个库是一个大语言模型推演库。其最大的特点在于无任何依赖的纯C/C++实现。支持Apple芯片加速、AVX, AVX2 and AVX512指令加速、1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit与8-bit量化、NVIDIA与AMD GPU等。它使用GGUF格式文件作为量化模型的存储格式。底层依赖GGML库有各种语言的桥接可以使用。C++广泛的使用场景与众多的开发者基础使之成为一个流行的开发库。如果你需要在现有的C++工程中引入大语言模型,可以参考。
官网:https://github.com/ggerganov/llama.cpp
Ollama
这并非一个开发库,而是一款支持多款大模型的API服务工具。该工具使用Go语言编写,支持Linux、Mac与Windows。如果你只是想快速拉起一款大语言模型API服务,选它可以最小化你的工作量。配合Open WebUI可以提供新手友好的大模型体验。
官网:https://ollama.com/
vLLM
vLLM是UC Berkeley开发的一款大语言模型推演库,同时提供了API服务功能。它最大的特色是名为PagedAttention的加速技术,通过高效管理注意力的key与value,据称相比Transformers可以将大模型处理通量提升数倍以上。vLLM已经被用在大语言模型擂台榜单Chatbot Arena(Vicuna作者开发)中,用来降低推演的资源占用。
如果你对PagedAttention感兴趣,可以参考它们的官方博客:https://blog.vllm.ai/2023/06/20/vllm.html
LlamaIndex
如果你正在考虑开发一款大语言模型驱动的知识问答应用,那至少应当尝试一下LlamaIndex。大语言模型的“幻觉”是知识问答场景最大的问题。为了解决这个问题,需要为大模型限定一个“上下文环境”。而上下文环境的内容则来自于知识问答所关联的知识库。从关联知识库获取相关内容,填充至上下文环境,以限定大语言模型生成的内容,即为检索增强生成(Retrieval Argumented Generation)。
检索增强生成不仅需要大语言模型,还需要一系列与之配套的模块。例如各种数据格式解析器,负责从PDF、word、网页、数据库等源头解析数据;数据切分模块将获得的数据切分成可供大语言模型处理的分块;数据特征解析模块将每一个数据块按照内容语义抽象为一个向量;向量存储与召回模块负责存储并超找与一个向量高度相似的向量模块。很显然,这些功能远非一个库可以解决的问题,而是一套系统工程。LlamaIndex的应用场景正好与此相关。
官网:https://www.llamaindex.ai/
LangChain
即便从来没有使用过这个库的人至少也应该有所耳闻。LangChain提供的各种基础组件可以用来开发与大语言模型相关的应用,例如之前提到的检索增强生成,并且不限于此。LangChain是一款非常庞杂的框架,如果你需要更加深入地了解LangChain,可以参考Andrew NG的免费教程“基于LangChain的大语言模型应用开发”。
https://www.deeplearning.ai/short-courses/langchain-for-llm-application-development/?ref=yinguobing.com
总结
以上为六款大语言模型开发常见的工具。大语言模型至今依然处在非常活跃的开发周期中,几乎每天都有大量的新概念与工具出现,请量力而为!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很
多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。