Pytorch 高频使用代码集锦

本文是PyTorch常用代码段合集,涵盖基本配置、张量处理、模型定义与操作、数据处理、模型训练与测试等5个方面,还给出了多个值得注意的Tips,内容非常全面。

PyTorch 最好的资料是官方文档。本文是PyTorch常用代码段,在参考资料的基础上做了一些修补,方便使用时查阅。

基本配置

导入包和版本查询

import torch  
import torch.nn as nn  
import torchvision  
print(torch.__version__)  
print(torch.version.cuda)  
print(torch.backends.cudnn.version())  
print(torch.cuda.get_device_name(0))  

可复现性

在硬件设备(CPU、GPU)不同时,完全的可复现性无法保证,即使随机种子相同。但是,在同一个设备上,应该保证可复现性。具体做法是,在程序开始的时候固定torch的随机种子,同时也把numpy的随机种子固定。

np.random.seed(0)  
torch.manual_seed(0)  
torch.cuda.manual_seed_all(0)  
  
torch.backends.cudnn.deterministic = True  
torch.backends.cudnn.benchmark = False  

显卡设置

如果只需要一张显卡

# Device configuration  
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')  

如果需要指定多张显卡,比如0,1号显卡。

import osos.environ['CUDA_VISIBLE_DEVICES'] = '0,1'  

也可以在命令行运行代码时设置显卡:

CUDA_VISIBLE_DEVICES=0,1 python train.py  

清除显存

torch.cuda.empty_cache()  

也可以使用在命令行重置GPU的指令

nvidia-smi --gpu-reset -i [gpu_id]  

张量(Tensor)处理

张量的数据类型

PyTorch有9种CPU张量类型和9种GPU张量类型。

张量基本信息

tensor = torch.randn(3,4,5)print(tensor.type())  # 数据类型print(tensor.size())  # 张量的shape,是个元组print(tensor.dim())   # 维度的数量  

命名张量

张量命名是一个非常有用的方法,这样可以方便地使用维度的名字来做索引或其他操作,大大提高了可读性、易用性,防止出错。

# 在PyTorch 1.3之前,需要使用注释  
# Tensor[N, C, H, W]  
images = torch.randn(32, 3, 56, 56)  
images.sum(dim=1)  
images.select(dim=1, index=0)  
  
# PyTorch 1.3之后  
NCHW = [‘N’, ‘C’, ‘H’, ‘W’]  
images = torch.randn(32, 3, 56, 56, names=NCHW)  
images.sum('C')  
images.select('C', index=0)  
# 也可以这么设置  
tensor = torch.rand(3,4,1,2,names=('C', 'N', 'H', 'W'))  
# 使用align_to可以对维度方便地排序  
tensor = tensor.align_to('N', 'C', 'H', 'W')  

数据类型转换

# 设置默认类型,pytorch中的FloatTensor远远快于DoubleTensor  
torch.set_default_tensor_type(torch.FloatTensor)  
  
# 类型转换  
tensor = tensor.cuda()  
tensor = tensor.cpu()  
tensor = tensor.float()  
tensor = tensor.long()  

torch.Tensor与np.ndarray转换

除了CharTensor,其他所有CPU上的张量都支持转换为numpy格式然后再转换回来。

ndarray = tensor.cpu().numpy()  
tensor = torch.from_numpy(ndarray).float()  
tensor = torch.from_numpy(ndarray.copy()).float() # If ndarray has negative stride.  

Torch.tensor与PIL.Image转换

# pytorch中的张量默认采用[N, C, H, W]的顺序,并且数据范围在[0,1],需要进行转置和规范化  
# torch.Tensor -> PIL.Image  
image = PIL.Image.fromarray(torch.clamp(tensor*255, min=0, max=255).byte().permute(1,2,0).cpu().numpy())  
image = torchvision.transforms.functional.to_pil_image(tensor)  # Equivalently way  
  
# PIL.Image -> torch.Tensor  
path = r'./figure.jpg'  
tensor = torch.from_numpy(np.asarray(PIL.Image.open(path))).permute(2,0,1).float() / 255  
tensor = torchvision.transforms.functional.to_tensor(PIL.Image.open(path)) # Equivalently way  

np.ndarray与PIL.Image的转换

image = PIL.Image.fromarray(ndarray.astype(np.uint8))  
ndarray = np.asarray(PIL.Image.open(path))  

从只包含一个元素的张量中提取值

value = torch.rand(1).item()  

张量形变

# 在将卷积层输入全连接层的情况下通常需要对张量做形变处理,  
# 相比torch.view,torch.reshape可以自动处理输入张量不连续的情况  
  
tensor = torch.rand(2,3,4)  
shape = (6, 4)  
tensor = torch.reshape(tensor, shape)  

打乱顺序

tensor = tensor[torch.randperm(tensor.size(0))]  # 打乱第一个维度  

水平翻转

# pytorch不支持tensor[::-1]这样的负步长操作,水平翻转可以通过张量索引实现  
# 假设张量的维度为[N, D, H, W].  
  
tensor = tensor[:,:,:,torch.arange(tensor.size(3) - 1, -1, -1).long()]  

复制张量

# Operation                 |  New/Shared memory | Still in computation graph |  
tensor.clone()            # |        New         |          Yes               |  
tensor.detach()           # |      Shared        |          No                |  
tensor.detach.clone()()   # |        New         |          No                |  

张量拼接

'''  
注意torch.cat和torch.stack的区别在于torch.cat沿着给定的维度拼接,  
而torch.stack会新增一维。例如当参数是3个10x5的张量,torch.cat的结果是30x5的张量,  
而torch.stack的结果是3x10x5的张量。  
'''  
tensor = torch.cat(list_of_tensors, dim=0)  
tensor = torch.stack(list_of_tensors, dim=0)  

将整数标签转为one-hot编码

# pytorch的标记默认从0开始  
tensor = torch.tensor([0, 2, 1, 3])  
N = tensor.size(0)  
num_classes = 4  
one_hot = torch.zeros(N, num_classes).long()  
one_hot.scatter_(dim=1, index=torch.unsqueeze(tensor, dim=1), src=torch.ones(N, num_classes).long())  

得到非零元素

torch.nonzero(tensor)               # index of non-zero elements  
torch.nonzero(tensor==0)            # index of zero elements  
torch.nonzero(tensor).size(0)       # number of non-zero elements  
torch.nonzero(tensor == 0).size(0)  # number of zero elements  

判断两个张量相等

torch.allclose(tensor1, tensor2)  # float tensor  
torch.equal(tensor1, tensor2)     # int tensor  

张量扩展

# Expand tensor of shape 64*512 to shape 64*512*7*7.  
tensor = torch.rand(64,512)  
torch.reshape(tensor, (64, 512, 1, 1)).expand(64, 512, 7, 7)  

矩阵乘法

# Matrix multiplcation: (m*n) * (n*p) * -> (m*p).  
result = torch.mm(tensor1, tensor2)  
  
# Batch matrix multiplication: (b*m*n) * (b*n*p) -> (b*m*p)  
result = torch.bmm(tensor1, tensor2)  
  
# Element-wise multiplication.  
result = tensor1 * tensor2  

计算两组数据之间的两两欧式距离

利用广播机制

dist = torch.sqrt(torch.sum((X1[:,None,:] - X2) ** 2, dim=2))  

模型定义和操作

一个简单两层卷积网络的示例

# convolutional neural network (2 convolutional layers)  
class ConvNet(nn.Module):  
    def __init__(self, num_classes=10):  
        super(ConvNet, self).__init__()  
        self.layer1 = nn.Sequential(  
            nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),  
            nn.BatchNorm2d(16),  
            nn.ReLU(),  
            nn.MaxPool2d(kernel_size=2, stride=2))  
        self.layer2 = nn.Sequential(  
            nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),  
            nn.BatchNorm2d(32),  
            nn.ReLU(),  
            nn.MaxPool2d(kernel_size=2, stride=2))  
        self.fc = nn.Linear(7*7*32, num_classes)  
  
    def forward(self, x):  
        out = self.layer1(x)  
        out = self.layer2(out)  
        out = out.reshape(out.size(0), -1)  
        out = self.fc(out)  
        return out  
  
model = ConvNet(num_classes).to(device)  

卷积层的计算和展示可以用这个网站辅助。

双线性汇合(bilinear pooling)

X = torch.reshape(N, D, H * W)                        # Assume X has shape N*D*H*W  
X = torch.bmm(X, torch.transpose(X, 1, 2)) / (H * W)  # Bilinear pooling  
assert X.size() == (N, D, D)  
X = torch.reshape(X, (N, D * D))  
X = torch.sign(X) * torch.sqrt(torch.abs(X) + 1e-5)   # Signed-sqrt normalization  
X = torch.nn.functional.normalize(X)                  # L2 normalization  

多卡同步 BN(Batch normalization)

当使用 torch.nn.DataParallel 将代码运行在多张 GPU 卡上时,PyTorch 的 BN 层默认操作是各卡上数据独立地计算均值和标准差,同步 BN 使用所有卡上的数据一起计算 BN 层的均值和标准差,缓解了当批量大小(batch size)比较小时对均值和标准差估计不准的情况,是在目标检测等任务中一个有效的提升性能的技巧。

sync_bn = torch.nn.SyncBatchNorm(num_features,   
                                 eps=1e-05,   
                                 momentum=0.1,   
                                 affine=True,   
                                 track_running_stats=True)  

将已有网络的所有BN层改为同步BN层

def convertBNtoSyncBN(module, process_group=None):  
    '''Recursively replace all BN layers to SyncBN layer.  
  
    Args:  
        module[torch.nn.Module]. Network  
    '''  
    if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):  
        sync_bn = torch.nn.SyncBatchNorm(module.num_features, module.eps, module.momentum,   
                                         module.affine, module.track_running_stats, process_group)  
        sync_bn.running_mean = module.running_mean  
        sync_bn.running_var = module.running_var  
        if module.affine:  
            sync_bn.weight = module.weight.clone().detach()  
            sync_bn.bias = module.bias.clone().detach()  
        return sync_bn  
    else:  
        for name, child_module in module.named_children():  
            setattr(module, name) = convert_syncbn_model(child_module, process_group=process_group))  
        return module  

类似 BN 滑动平均

如果要实现类似 BN 滑动平均的操作,在 forward 函数中要使用原地(inplace)操作给滑动平均赋值。

class BN(torch.nn.Module)  
    def __init__(self):  
        ...  
        self.register_buffer('running_mean', torch.zeros(num_features))  
  
    def forward(self, X):  
        ...  
        self.running_mean += momentum * (current - self.running_mean)  

计算模型整体参数量

num_parameters = sum(torch.numel(parameter) for parameter in model.parameters())  

查看网络中的参数

可以通过model.state_dict()或者model.named_parameters()函数查看现在的全部可训练参数(包括通过继承得到的父类中的参数)

params = list(model.named_parameters())  
(name, param) = params[28]  
print(name)  
print(param.grad)  
print('-------------------------------------------------')  
(name2, param2) = params[29]  
print(name2)  
print(param2.grad)  
print('----------------------------------------------------')  
(name1, param1) = params[30]  
print(name1)  
print(param1.grad)  

模型可视化(使用pytorchviz)

szagoruyko/pytorchvizgithub.com  

类似 Keras 的 model.summary() 输出模型信息,使用pytorch-summary

sksq96/pytorch-summarygithub.com  

模型权重初始化

注意 model.modules() 和 model.children() 的区别:model.modules() 会迭代地遍历模型的所有子层,而 model.children() 只会遍历模型下的一层。

# Common practise for initialization.  
for layer in model.modules():  
    if isinstance(layer, torch.nn.Conv2d):  
        torch.nn.init.kaiming_normal_(layer.weight, mode='fan_out',  
                                      nonlinearity='relu')  
        if layer.bias is not None:  
            torch.nn.init.constant_(layer.bias, val=0.0)  
    elif isinstance(layer, torch.nn.BatchNorm2d):  
        torch.nn.init.constant_(layer.weight, val=1.0)  
        torch.nn.init.constant_(layer.bias, val=0.0)  
    elif isinstance(layer, torch.nn.Linear):  
        torch.nn.init.xavier_normal_(layer.weight)  
        if layer.bias is not None:  
            torch.nn.init.constant_(layer.bias, val=0.0)  
  
# Initialization with given tensor.  
layer.weight = torch.nn.Parameter(tensor)  

提取模型中的某一层

modules()会返回模型中所有模块的迭代器,它能够访问到最内层,比如self.layer1.conv1这个模块,还有一个与它们相对应的是name_children()属性以及named_modules(),这两个不仅会返回模块的迭代器,还会返回网络层的名字。

# 取模型中的前两层  
new_model = nn.Sequential(*list(model.children())[:2]   
# 如果希望提取出模型中的所有卷积层,可以像下面这样操作:  
for layer in model.named_modules():  
    if isinstance(layer[1],nn.Conv2d):  
         conv_model.add_module(layer[0],layer[1])  

部分层使用预训练模型

注意如果保存的模型是 torch.nn.DataParallel,则当前的模型也需要是

model.load_state_dict(torch.load('model.pth'), strict=False)  

将在 GPU 保存的模型加载到 CPU

model.load_state_dict(torch.load('model.pth', map_location='cpu'))  

导入另一个模型的相同部分到新的模型

模型导入参数时,如果两个模型结构不一致,则直接导入参数会报错。用下面方法可以把另一个模型的相同的部分导入到新的模型中。

# model_new代表新的模型  
# model_saved代表其他模型,比如用torch.load导入的已保存的模型  
model_new_dict = model_new.state_dict()  
model_common_dict = {k:v for k, v in model_saved.items() if k in model_new_dict.keys()}  
model_new_dict.update(model_common_dict)  
model_new.load_state_dict(model_new_dict)  

数据处理

计算数据集的均值和标准差

import os  
import cv2  
import numpy as np  
from torch.utils.data import Dataset  
from PIL import Image  
  
  
def compute_mean_and_std(dataset):  
    # 输入PyTorch的dataset,输出均值和标准差  
    mean_r = 0  
    mean_g = 0  
    mean_b = 0  
  
    for img, _ in dataset:  
        img = np.asarray(img) # change PIL Image to numpy array  
        mean_b += np.mean(img[:, :, 0])  
        mean_g += np.mean(img[:, :, 1])  
        mean_r += np.mean(img[:, :, 2])  
  
    mean_b /= len(dataset)  
    mean_g /= len(dataset)  
    mean_r /= len(dataset)  
  
    diff_r = 0  
    diff_g = 0  
    diff_b = 0  
  
    N = 0  
  
    for img, _ in dataset:  
        img = np.asarray(img)  
  
        diff_b += np.sum(np.power(img[:, :, 0] - mean_b, 2))  
        diff_g += np.sum(np.power(img[:, :, 1] - mean_g, 2))  
        diff_r += np.sum(np.power(img[:, :, 2] - mean_r, 2))  
  
        N += np.prod(img[:, :, 0].shape)  
  
    std_b = np.sqrt(diff_b / N)  
    std_g = np.sqrt(diff_g / N)  
    std_r = np.sqrt(diff_r / N)  
  
    mean = (mean_b.item() / 255.0, mean_g.item() / 255.0, mean_r.item() / 255.0)  
    std = (std_b.item() / 255.0, std_g.item() / 255.0, std_r.item() / 255.0)  
    return mean, std  

得到视频数据基本信息

import cv2  
video = cv2.VideoCapture(mp4_path)  
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))  
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))  
num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))  
fps = int(video.get(cv2.CAP_PROP_FPS))  
video.release()  

TSN 每段(segment)采样一帧视频

K = self._num_segments  
if is_train:  
    if num_frames > K:  
        # Random index for each segment.  
        frame_indices = torch.randint(  
            high=num_frames // K, size=(K,), dtype=torch.long)  
        frame_indices += num_frames // K * torch.arange(K)  
    else:  
        frame_indices = torch.randint(  
            high=num_frames, size=(K - num_frames,), dtype=torch.long)  
        frame_indices = torch.sort(torch.cat((  
            torch.arange(num_frames), frame_indices)))[0]  
else:  
    if num_frames > K:  
        # Middle index for each segment.  
        frame_indices = num_frames / K // 2  
        frame_indices += num_frames // K * torch.arange(K)  
    else:  
        frame_indices = torch.sort(torch.cat((                                
            torch.arange(num_frames), torch.arange(K - num_frames))))[0]  
assert frame_indices.size() == (K,)  
return [frame_indices[i] for i in range(K)]  

常用训练和验证数据预处理

其中 ToTensor 操作会将 PIL.Image 或形状为 H×W×D,数值范围为 [0, 255] 的 np.ndarray 转换为形状为 D×H×W,数值范围为 [0.0, 1.0] 的 torch.Tensor。

train_transform = torchvision.transforms.Compose([  
    torchvision.transforms.RandomResizedCrop(size=224,  
                                             scale=(0.08, 1.0)),  
    torchvision.transforms.RandomHorizontalFlip(),  
    torchvision.transforms.ToTensor(),  
    torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),  
                                     std=(0.229, 0.224, 0.225)),  
 ])  
 val_transform = torchvision.transforms.Compose([  
    torchvision.transforms.Resize(256),  
    torchvision.transforms.CenterCrop(224),  
    torchvision.transforms.ToTensor(),  
    torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),  
                                     std=(0.229, 0.224, 0.225)),  
])  

模型训练和测试

分类模型训练代码

# Loss and optimizer  
criterion = nn.CrossEntropyLoss()  
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)  
  
# Train the model  
total_step = len(train_loader)  
for epoch in range(num_epochs):  
    for i ,(images, labels) in enumerate(train_loader):  
        images = images.to(device)  
        labels = labels.to(device)  
  
        # Forward pass  
        outputs = model(images)  
        loss = criterion(outputs, labels)  
  
        # Backward and optimizer  
        optimizer.zero_grad()  
        loss.backward()  
        optimizer.step()  
  
        if (i+1) % 100 == 0:  
            print('Epoch: [{}/{}], Step: [{}/{}], Loss: {}'  
                  .format(epoch+1, num_epochs, i+1, total_step, loss.item()))  

分类模型测试代码

# Test the model  
model.eval()  # eval mode(batch norm uses moving mean/variance   
              #instead of mini-batch mean/variance)  
with torch.no_grad():  
    correct = 0  
    total = 0  
    for images, labels in test_loader:  
        images = images.to(device)  
        labels = labels.to(device)  
        outputs = model(images)  
        _, predicted = torch.max(outputs.data, 1)  
        total += labels.size(0)  
        correct += (predicted == labels).sum().item()  
  
    print('Test accuracy of the model on the 10000 test images: {} %'  
          .format(100 * correct / total))  

自定义loss

继承torch.nn.Module类写自己的loss。

class MyLoss(torch.nn.Moudle):  
    def __init__(self):  
        super(MyLoss, self).__init__()  
  
    def forward(self, x, y):  
        loss = torch.mean((x - y) ** 2)  
        return loss  

标签平滑(label smoothing)

写一个label_smoothing.py的文件,然后在训练代码里引用,用LSR代替交叉熵损失即可。label_smoothing.py内容如下:

import torch  
import torch.nn as nn  
  
  
class LSR(nn.Module):  
  
    def __init__(self, e=0.1, reduction='mean'):  
        super().__init__()  
  
        self.log_softmax = nn.LogSoftmax(dim=1)  
        self.e = e  
        self.reduction = reduction  
  
    def _one_hot(self, labels, classes, value=1):  
        """  
            Convert labels to one hot vectors  
  
        Args:  
            labels: torch tensor in format [label1, label2, label3, ...]  
            classes: int, number of classes  
            value: label value in one hot vector, default to 1  
  
        Returns:  
            return one hot format labels in shape [batchsize, classes]  
        """  
  
        one_hot = torch.zeros(labels.size(0), classes)  
  
        #labels and value_added  size must match  
        labels = labels.view(labels.size(0), -1)  
        value_added = torch.Tensor(labels.size(0), 1).fill_(value)  
  
        value_added = value_added.to(labels.device)  
        one_hot = one_hot.to(labels.device)  
  
        one_hot.scatter_add_(1, labels, value_added)  
  
        return one_hot  
  
    def _smooth_label(self, target, length, smooth_factor):  
        """convert targets to one-hot format, and smooth  
        them.  
        Args:  
            target: target in form with [label1, label2, label_batchsize]  
            length: length of one-hot format(number of classes)  
            smooth_factor: smooth factor for label smooth  
  
        Returns:  
            smoothed labels in one hot format  
        """  
        one_hot = self._one_hot(target, length, value=1 - smooth_factor)  
        one_hot += smooth_factor / (length - 1)  
  
        return one_hot.to(target.device)  
  
    def forward(self, x, target):  
  
        if x.size(0) != target.size(0):  
            raise ValueError('Expected input batchsize ({}) to match target batch_size({})'  
                    .format(x.size(0), target.size(0)))  
  
        if x.dim() < 2:  
            raise ValueError('Expected input tensor to have least 2 dimensions(got {})'  
                    .format(x.size(0)))  
  
        if x.dim() != 2:  
            raise ValueError('Only 2 dimension tensor are implemented, (got {})'  
                    .format(x.size()))  
  
  
        smoothed_target = self._smooth_label(target, x.size(1), self.e)  
        x = self.log_softmax(x)  
        loss = torch.sum(- x * smoothed_target, dim=1)  
  
        if self.reduction == 'none':  
            return loss  
  
        elif self.reduction == 'sum':  
            return torch.sum(loss)  
  
        elif self.reduction == 'mean':  
            return torch.mean(loss)  
  
        else:  
            raise ValueError('unrecognized option, expect reduction to be one of none, mean, sum')  

或者直接在训练文件里做label smoothing

for images, labels in train_loader:  
    images, labels = images.cuda(), labels.cuda()  
    N = labels.size(0)  
    # C is the number of classes.  
    smoothed_labels = torch.full(size=(N, C), fill_value=0.1 / (C - 1)).cuda()  
    smoothed_labels.scatter_(dim=1, index=torch.unsqueeze(labels, dim=1), value=0.9)  
  
    score = model(images)  
    log_prob = torch.nn.functional.log_softmax(score, dim=1)  
    loss = -torch.sum(log_prob * smoothed_labels) / N  
    optimizer.zero_grad()  
    loss.backward()  
    optimizer.step()  

Mixup训练

beta_distribution = torch.distributions.beta.Beta(alpha, alpha)  
for images, labels in train_loader:  
    images, labels = images.cuda(), labels.cuda()  
  
    # Mixup images and labels.  
    lambda_ = beta_distribution.sample([]).item()  
    index = torch.randperm(images.size(0)).cuda()  
    mixed_images = lambda_ * images + (1 - lambda_) * images[index, :]  
    label_a, label_b = labels, labels[index]  
  
    # Mixup loss.  
    scores = model(mixed_images)  
    loss = (lambda_ * loss_function(scores, label_a)  
            + (1 - lambda_) * loss_function(scores, label_b))  
    optimizer.zero_grad()  
    loss.backward()  
    optimizer.step()  

L1 正则化

l1_regularization = torch.nn.L1Loss(reduction='sum')  
loss = ...  # Standard cross-entropy loss  
  
for param in model.parameters():  
    loss += torch.sum(torch.abs(param))  
loss.backward()  

不对偏置项进行权重衰减(weight decay)

pytorch里的weight decay相当于l2正则

bias_list = (param for name, param in model.named_parameters() if name[-4:] == 'bias')  
others_list = (param for name, param in model.named_parameters() if name[-4:] != 'bias')  
parameters = [{'parameters': bias_list, 'weight_decay': 0},                  
              {'parameters': others_list}]  
optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)  

梯度裁剪(gradient clipping)

torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=20)  

得到当前学习率

# If there is one global learning rate (which is the common case).  
lr = next(iter(optimizer.param_groups))['lr']  
  
# If there are multiple learning rates for different layers.  
all_lr = []  
for param_group in optimizer.param_groups:  
    all_lr.append(param_group['lr'])  

另一种方法,在一个batch训练代码里,当前的lr是optimizer.param_groups[0]['lr']

学习率衰减

# Reduce learning rate when validation accuarcy plateau.  
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', patience=5, verbose=True)  
for t in range(0, 80):  
    train(...)  
    val(...)  
    scheduler.step(val_acc)  
  
# Cosine annealing learning rate.  
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=80)  
# Reduce learning rate by 10 at given epochs.  
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[50, 70], gamma=0.1)  
for t in range(0, 80):  
    scheduler.step()      
    train(...)  
    val(...)  
  
# Learning rate warmup by 10 epochs.  
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda t: t / 10)  
for t in range(0, 10):  
    scheduler.step()  
    train(...)  
    val(...)  

优化器链式更新

从1.4版本开始,torch.optim.lr_scheduler 支持链式更新(chaining),即用户可以定义两个 schedulers,并交替在训练中使用。

import torch  
from torch.optim import SGD  
from torch.optim.lr_scheduler import ExponentialLR, StepLR  
model = [torch.nn.Parameter(torch.randn(2, 2, requires_grad=True))]  
optimizer = SGD(model, 0.1)  
scheduler1 = ExponentialLR(optimizer, gamma=0.9)  
scheduler2 = StepLR(optimizer, step_size=3, gamma=0.1)  
for epoch in range(4):  
    print(epoch, scheduler2.get_last_lr()[0])  
    optimizer.step()  
    scheduler1.step()  
    scheduler2.step()  

模型训练可视化

PyTorch可以使用tensorboard来可视化训练过程。

安装和运行TensorBoard。

pip install tensorboard  
tensorboard --logdir=runs  

使用SummaryWriter类来收集和可视化相应的数据,放了方便查看,可以使用不同的文件夹,比如’Loss/train’和’Loss/test’。

from torch.utils.tensorboard import SummaryWriter  
import numpy as np  
  
writer = SummaryWriter()  
  
for n_iter in range(100):  
    writer.add_scalar('Loss/train', np.random.random(), n_iter)  
    writer.add_scalar('Loss/test', np.random.random(), n_iter)  
    writer.add_scalar('Accuracy/train', np.random.random(), n_iter)  
    writer.add_scalar('Accuracy/test', np.random.random(), n_iter)  

保存与加载断点

注意为了能够恢复训练,我们需要同时保存模型和优化器的状态,以及当前的训练轮数。

start_epoch = 0  
# Load checkpoint.  
if resume: # resume为参数,第一次训练时设为0,中断再训练时设为1  
    model_path = os.path.join('model', 'best_checkpoint.pth.tar')  
    assert os.path.isfile(model_path)  
    checkpoint = torch.load(model_path)  
    best_acc = checkpoint['best_acc']  
    start_epoch = checkpoint['epoch']  
    model.load_state_dict(checkpoint['model'])  
    optimizer.load_state_dict(checkpoint['optimizer'])  
    print('Load checkpoint at epoch {}.'.format(start_epoch))  
    print('Best accuracy so far {}.'.format(best_acc))  
  
# Train the model  
for epoch in range(start_epoch, num_epochs):   
    ...   
  
    # Test the model  
    ...  
  
    # save checkpoint  
    is_best = current_acc > best_acc  
    best_acc = max(current_acc, best_acc)  
    checkpoint = {  
        'best_acc': best_acc,  
        'epoch': epoch + 1,  
        'model': model.state_dict(),  
        'optimizer': optimizer.state_dict(),  
    }  
    model_path = os.path.join('model', 'checkpoint.pth.tar')  
    best_model_path = os.path.join('model', 'best_checkpoint.pth.tar')  
    torch.save(checkpoint, model_path)  
    if is_best:  
        shutil.copy(model_path, best_model_path)  

提取 ImageNet 预训练模型某层的卷积特征

# VGG-16 relu5-3 feature.  
model = torchvision.models.vgg16(pretrained=True).features[:-1]  
# VGG-16 pool5 feature.  
model = torchvision.models.vgg16(pretrained=True).features  
# VGG-16 fc7 feature.  
model = torchvision.models.vgg16(pretrained=True)  
model.classifier = torch.nn.Sequential(*list(model.classifier.children())[:-3])  
# ResNet GAP feature.  
model = torchvision.models.resnet18(pretrained=True)  
model = torch.nn.Sequential(collections.OrderedDict(  
    list(model.named_children())[:-1]))  
  
with torch.no_grad():  
    model.eval()  
    conv_representation = model(image)  

提取 ImageNet 预训练模型多层的卷积特征

class FeatureExtractor(torch.nn.Module):  
    """Helper class to extract several convolution features from the given  
    pre-trained model.  
  
    Attributes:  
        _model, torch.nn.Module.  
        _layers_to_extract, list<str> or set<str>  
  
    Example:  
        >>> model = torchvision.models.resnet152(pretrained=True)  
        >>> model = torch.nn.Sequential(collections.OrderedDict(  
                list(model.named_children())[:-1]))  
        >>> conv_representation = FeatureExtractor(  
                pretrained_model=model,  
                layers_to_extract={'layer1', 'layer2', 'layer3', 'layer4'})(image)  
    """  
    def __init__(self, pretrained_model, layers_to_extract):  
        torch.nn.Module.__init__(self)  
        self._model = pretrained_model  
        self._model.eval()  
        self._layers_to_extract = set(layers_to_extract)  
  
    def forward(self, x):  
        with torch.no_grad():  
            conv_representation = []  
            for name, layer in self._model.named_children():  
                x = layer(x)  
                if name in self._layers_to_extract:  
                    conv_representation.append(x)  
            return conv_representation  

微调全连接层

model = torchvision.models.resnet18(pretrained=True)  
for param in model.parameters():  
    param.requires_grad = False  
model.fc = nn.Linear(512, 100)  # Replace the last fc layer  
optimizer = torch.optim.SGD(model.fc.parameters(), lr=1e-2, momentum=0.9, weight_decay=1e-4)  

以较大学习率微调全连接层,较小学习率微调卷积层

model = torchvision.models.resnet18(pretrained=True)  
finetuned_parameters = list(map(id, model.fc.parameters()))  
conv_parameters = (p for p in model.parameters() if id(p) not in finetuned_parameters)  
parameters = [{'params': conv_parameters, 'lr': 1e-3},   
              {'params': model.fc.parameters()}]  
optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)  

其他注意事项

不要使用太大的线性层。因为nn.Linear(m,n)使用的是的内存,线性层太大很容易超出现有显存。

不要在太长的序列上使用RNN。因为RNN反向传播使用的是BPTT算法,其需要的内存和输入序列的长度呈线性关系。

model(x) 前用 model.train() 和 model.eval() 切换网络状态。

不需要计算梯度的代码块用 with torch.no_grad() 包含起来。

model.eval() 和 torch.no_grad() 的区别在于,model.eval() 是将网络切换为测试状态,例如 BN 和dropout在训练和测试阶段使用不同的计算方法。torch.no_grad() 是关闭 PyTorch 张量的自动求导机制,以减少存储使用和加速计算,得到的结果无法进行 loss.backward()。

model.zero_grad()会把整个模型的参数的梯度都归零, 而optimizer.zero_grad()只会把传入其中的参数的梯度归零.

torch.nn.CrossEntropyLoss 的输入不需要经过 Softmax。torch.nn.CrossEntropyLoss 等价于 torch.nn.functional.log_softmax + torch.nn.NLLLoss。

loss.backward() 前用 optimizer.zero_grad() 清除累积梯度。

torch.utils.data.DataLoader 中尽量设置 pin_memory=True,对特别小的数据集如 MNIST 设置 pin_memory=False 反而更快一些。num_workers 的设置需要在实验中找到最快的取值。

用 del 及时删除不用的中间变量,节约 GPU 存储。使用 inplace 操作可节约 GPU 存储,如:

x = torch.nn.functional.relu(x, inplace=True)  

减少 CPU 和 GPU 之间的数据传输。例如如果你想知道一个 epoch 中每个 mini-batch 的 loss 和准确率,先将它们累积在 GPU 中等一个 epoch 结束之后一起传输回 CPU 会比每个 mini-batch 都进行一次 GPU 到 CPU 的传输更快。

使用半精度浮点数 half() 会有一定的速度提升,具体效率依赖于 GPU 型号。需要小心数值精度过低带来的稳定性问题。

时常使用 assert tensor.size() == (N, D, H, W) 作为调试手段,确保张量维度和你设想中一致。

除了标记 y 外,尽量少使用一维张量,使用 n*1 的二维张量代替,可以避免一些意想不到的一维张量计算结果。

统计代码各部分耗时:

with torch.autograd.profiler.profile(enabled=True, use_cuda=False) as profile:      
  ...print(profile)# 或者在命令行运行python -m torch.utils.bottleneck main.py  

使用TorchSnooper来调试PyTorch代码,程序在执行的时候,就会自动 print 出来每一行的执行结果的 tensor 的形状、数据类型、设备、是否需要梯度的信息。

# pip install torchsnooper  
import torchsnooper# 对于函数,使用修饰器@torchsnooper.snoop()  
  
# 如果不是函数,使用 with 语句来激活 TorchSnooper,把训练的那个循环装进 with 语句中去。  
with torchsnooper.snoop():      
  原本的代码  

https://github.com/zasdfgbnm/TorchSnoopergithub.com

模型可解释性,使用captum库:https://captum.ai/captum.ai

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

自己也整理很多AI大模型资料:AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

  • 13
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值